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Abstract

One of the new approaches in building an intelligent decision-making system is
usage of swarm robots. These multi-robot systems are emerging as a more efficient
systems in the field of artificial swarm intelligence and in agriculture due to their
desired collective behavior interacting with the surrounding and other robots in
solving various problems based on the inputs.

In this technical report, development of a robot ensemble with non-holonomic con-
straints using a control law to achieve a desired position, orientation and shape of
the formation is being implemented. The robot swarm is controlled through indi-
vidual team members along with minimal knowledge of the ensemble state. Fur-
thermore, the control of the robot swarm is independent of the number of robots
in the team that ensures the system is stable to failures in individual members. In
addition, inter-robot collision avoidance, motion planning of the ensemble is de-
tailed in the report. In order to achieve a desired distribution of a defined number
of robots a decentralized control law safe from inter-robot collisions has been de-
rived. The results of the algorithms are simulated for a differential drive robot
using MATLAB software tool.



Chapter 1

INTRODUCTION

Study and research of robot swarms has been an area that is vastly developing due to techno-
logical advancements in terms of sensing, computing etc. and its various applications in fields
such as security and defense, monitoring of the environment, search and rescue operation etc.
Hence, effective control strategies for the robot swarms is being developed and is necessary for
execution of complex tasks.

Various methodologies have been adapted to control the formation of robots such as control
through formation graphs, controlling by maintaining a rigid virtual structures within the team,
leader follower architecture etc. However, these methods have drawbacks of sensitivity to
failures of individual members and requirement of re-ordering of the robots.

This report details one of the methodology developed by Michael and Kumar [2] to control
the orientation and shape of the team of mobile robots which are independent of the count and
ordering of the team. The principle of the methodology is modelling of formation using an
abstract state which describes the shape and pose of the entire team while being independent of
all team members. Thus, the algorithm holds good for teams of varying size. Also, the abstract
state is decoupled, which makes the control design effective and this is further detailed in the
report. The report details the application of this algorithm to non-holonomic robots taking into
consideration the avoidance of collision along with motion planning.
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Chapter 2

BACKGROUND

This report consists of previous work of [1] Belta and Kumar (2004), [4] Michael et al. (2006),
[3] Michael et al. (2007) and [2] Michael and Kumar (2008). In the reference research pa-
pers, an abstraction map is used to transform the high-dimensional state space into a smaller,
tractable state space which captures only the position, orientation, and shape of the formation.
The main advantages of this abstract representation are: (a) its dimension is independent of the
number of robots in the team; (b) it lends itself to planning in a lower-dimensional space; and
(c) minimum communication between robots.

2.1 Problem Formulation
The state space of the N-robot system is constructed by creating N copies of Qi , the state space
of the ith robot:

Q = Q1 x Q2 x ...... x QN (2.1)

Given a large number of robots evolving on the configuration space Q also considered as mani-
fold in this report, we want to be able to solve motion-generation/control problems on a smaller
dimensional space, which captures the essential features of the group, according to the class of
tasks to be accomplished. We want the dimension of the control problem to be independent of
the number of agents and independent of the possible ordering of the robots. These require-
ments will provide good scaling properties and control laws which are robust to individual
failures.

We also need to make sure that, after solving the task on the small dimensional space, we
can go back and generate control laws for the individual agents. All of these ideas lead to the
following definition.

φ : Q 7→M, φ(q) = x (2.2)

where φ is the surjective submersion mapping from higher-dimensional state q ∈ Q to lower-
dimensional abstract state x ∈M. Map φ is called abstraction as it is invariant to permutations
of the robots and the dimension n of M is not dependant on the number of robots N. M is also
called abstract manifold and x is called the abstract state.

Consider N kinematically controlled robots with states qi belonging to manifold Qi and
control space Ui. For planar fully actuated robots, the states are position vectors qi ∈ Qi =
R2, i = 1, .....,N with respect to world frame {W} and the controls ui ∈Ui = R2 as follows:

q̇i = ui (2.3)
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In addition, M is considered to have a product structure of the form

M = G x S, x = (g,s), φ = (φg,φs) (2.4)

where G is a Lie group. g ∈ G defines the position and orientation of the team of robots in
the world frame W and is called the group variable. s ∈ S defines the shape of the team and is
called the shape variable. Thus, there should be a control-suited description of team of robots
x in terms of group variable g of a local frame, which captures the dependence of the team on
the world frame W , and a shape s, which is decoupled from g, and hence an intrinsic property
of the formation. Thus group G is left invariant i.e. for any arbitrary element ḡ ∈ G, the map φ

satisfies the following

φ(q) = (g,s) =⇒ φ(ḡq) = (ḡg,s) (2.5)

where (ḡg) represents the block diagonal action of the group elements ḡ on the configuration
q ∈ Q and ḡg represents the left translation of g by ḡ using composition rule on group G. In
the case of planar robots, ḡg would represent a rigid displacement of all of the robots by ḡ.
However, this displacement will not change the shape s of the team of robots. Thus, the control
laws based on the abstract state x = (g,s), will be invariant to pose of the world frame W . Thus,
instead of designing high-dimensional behaviors XQ, we will be able to describe collective be-
haviors in terms of time-parameterized curves, XM on the lower dimensional abstract manifold
M.

Next the author has defined an abstract behavior. What is an abstract behavior? Any vector
field XM ∈ T M i.e. tangent space of M is called an abstract behavior. Now, dφ represents
the differential also called tangent of the map φ . Since, φ is a submersion, it ensures the
surjectivity of dφ at any point q ∈ Q. This would guarantee the existence of vector fields
XQ mapped to any abstract behaviour XM i.e all behaviors ẋ in XM(co-domain) is covered by
behaviors q̇ in XQ(domain).This would mean that some behaviors in manifold Q can be seen
in abstract manifold M and some behaviors cannot be seen in M i.e some behavior XQ ∈ T Q
is mapped to a non-zero XM ∈ T M and some might not. Those behaviors XQ ∈ T Q, which
are mapped to XM are called detectable behaviors. Behaviors which are not mapped to XM are
called non-detectable behavior.

2.1.1 Goal
The goal of the report is to generate individual control laws q̇ ∈ XQ which are mapped to
desired abstract (collective) behaviors (ẋ∈XM), i.e., wisely chosen low-dimension descriptions.
Therefore, individual motions which cannot be captured in M are not allowed, because this
would be a waste of energy.

Thus the problems that are addressed and solved are as follows:

Problem: Determine physically meaningful formation abstraction φ , abstract behaviors XM,
and corresponding individual robot control laws ui ∈ XQ satisfying the following requirements:

1. the abstract state x is stationary if and only if all the robots qi are stationary;

2. the abstract manifold M has a product structure and satisfies the left invariance property;
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3. the control systems on group G and shape S are decoupled i.e. independent of each other;

4. if the state x of the abstract manifold is bounded, then the state of each robot qi is
bounded;

5. monotonic convergence of the abstract state;

6. inter-collision avoidance.

The first 4 points are addressed in this chapter and the last 2 along with the minimum-energy
condition is addressed in CHAPTER 3 and CHAPTER 4. In addition to the requirements ex-
plicitly formulated in the above Problem, it is desired that the energy spent by the individual
robots to produce a desired abstract behavior be kept to a minimum. Thus, control inputs that
satisfy a minimum-energy constraints are obtained. Also, the amount of inter-robot communi-
cation in the overall control architecture should be limited.

2.2 Approach to Solve the Problem Formulated in 2.1.1
In this section a solution to the above Problem 2.1.1 is characterized. Let us assume that the
abstract manifold M has a product structure M = G x S. If D is a distribution of a manifold M
of dimension n, then Dx, is the subset of tangent space of abstract manifold M and is given by
Dx ⊂ T M,∀x ∈M. Also, D can be interpreted as Dx = span{X1|x,X2|x, ....,Xr|x}, where r is the
number of linearly independent vector fields Xr in the tangent space of manifold M around point
x. Let Ωg be the co-distribution spanned by the differential forms obtained by differentiating
each component of φg. Similarly, Ωs will be the co-distribution determined by φs. Let ∆g and
∆s denote the corresponding annihilating distributions, i.e. the distributions that maps Ωg and
Ωs to zero is given by,

Ωg(∆g) = 0, Ωs(∆s) = 0 (2.6)

Let ∆̄g be any distribution such that ∆̄g +∆g = T Q and dim ∆̄g +dim∆g = dimQ. Similarly
∆̄s be any distribution such that ∆̄s +∆s = T Q and dim ∆̄s + dim∆s = dimQ. Then detectable
behavior,

XQ ∈ ∆̄g (2.7)

guarantees that, on the abstract manifold x = (g,s), g changes in time whenever q does.
Similarly

XQ ∈ ∆̄s (2.8)

corresponds to a change in shape variable s. Thus, the set of detectable behaviors is given by
∆̄g + ∆̄s. Thus

XQ ∈ ∆̄g + ∆̄s (2.9)

Main idea is choosing XQ ∈ T Q such that any change in the behavior of q̇ = u in Q must be
detectable in M and since any changes in the abstract manifold M is mapped back to behaviors
in Q (φ is surjective), data loss can be minimized. Hence, the system is forbidden to move on
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a leaf φ = constant (since, dφ = 0 in this case), which is equivalent to any motion that cannot
be observed on abstract manifold M iff (2.9) is satisfied.

Next, to formulate the decoupling condition between the control of group G and the shape of
S of manifold M, we first require that the distributions ∆̄g and ∆̄s be independent, i.e., ∆̄g∩ ∆̄s =
0 , where 0 denotes the zero vector field. Then the decoupling condition is satisfied if the co-
distribution corresponding to g annihilates the visible motion corresponding to s and the other
way around. Explicitly,

Ωg(∆̄s) = 0, Ωs(∆̄g) = 0 (2.10)

Now, in order to verify this, let us take g = φg(q). When g is differentiated, ġ = dφgq̇ is
obtained. If q̇ is detectable (satisfies (2.9)), it can be written as q̇ = Asus +Agug, where Ag and
As are matrices whose columns span ∆̄g and ∆̄s respectively. Now, us does not affect q̇ only
when changes in us does not affect the dependence of q̇ on ug i.e. dφgAs = 0, which in turn
means, Ωg(∆̄s) = 0. ug and us separately control g and s and will be the actual controls for
group and shape.

Thus, given a vector field XM ∈ T M, the set of all vector fields XQ ∈ T Q which maps to XM
is underdetermined as it’s not a bijective mapping. Let q̇ and ẋ denote the coordinates of XQ
and XM, respectively. Then

dφ q̇ = ẋ (2.11)

Here q̇ and ẋ denote the coordinates of the tangent space of XQ and XM, respectively.
Note that this equation is of the form AX = B where A = dφ ,X = q̇,B = ẋ. Since the

equation is underdetermined, it can be solved by minimizing l2 norm of vector q̇, since we are
considering q to be defined in R2 i.e. planar.

Also, since φ is a submersion, more precisely φ is a submersion at qi, i = 1,2, .....,N such
that its differential dφ : XqiQ 7→ Xφ(qi)M is a surjective linear map. A differential map φ that
is a submersive at each point qi ∈ Q is called a submersion. Equivalently, φ is a submersion if
its differential dφ has a constant rank equal to the dimension of M. φ1, φ2, ..., φn, n being the
dimension of abstract state x ∈M are functionally independent or, equivalently, dφ is full-row
rank. Hence, there exists an inverse dφ+ which is given by the right Moore-Penrose Inverse or
commonly called Pseudo-Inverse (for full row-rank matrix):

A+ = AT (AAT )−1 (2.12)

Substituting these values gives

dφ
+ = dφ

T (dφdφ
T )−1 (2.13)

Thus the solution to minimization problem, minq̇q̇T q̇ under constraint (2.11) is the least
norm in Euclidean sense given by

q̇ = dφ
+ẋ

q̇ = dφ
T (dφdφ

T )−1ẋ (2.14)
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Since dφ is full row rank, it means dimrow(dφ) < dimcolumn(dφ), hence an inverse exists
for dφdφ T , where dφ T = (dφ T

g ,dφ T
s ), ẋ = (ġ, ṡ). (2.14) becomes

q̇ = (dφ
T
g ,dφ

T
s )((dφg,dφs)(dφ

T
g ,dφ

T
s ))
−1ẋ

q̇ = (dφ
T
g ,dφ

T
s )(dφgdφ

T
g +dφsdφ

T
s )
−1(ġ, ṡ)

q̇ = (dφ
T
g ,dφ

T
s )((dφgdφ

T
g )
−1 +(dφsdφ

T
s )
−1)(ġ, ṡ)

q̇ = (dφ
T
g (dφgdφ

T
g )
−1 +dφ

T
s (dφsdφ

T
s )
−1)(ġ, ṡ)

q̇ = dφ
T
g (dφgdφ

T
g )
−1ġ+dφ

T
s (dφsdφ

T
s )
−1ṡ (2.15)

if dφgdφ T
s = 0 and dφsdφ T

g = 0.
This q̇ satisfies the detectability and decoupling condition in terms of (2.9) and (2.10) i.e ∆̄g

and ∆̄s are spanned by dφ T
g and dφ T

s respectively. Linear independence of dφg and dφs implies
linear independence of ∆̄g and ∆̄s and (2.6) implies that ∆̄g and ∆g are orthogonal. (2.10) is
implied by dφgdφ T

s = 0 and dφsdφ T
g = 0.

In order to limit the amount of inter-robot communication in the overall control architecture,
author designs an architecture where the control law of robot depends on its own state and
lower-dimensional abstract state of the team from group manifold, x = (g,s), as follows:

ui = ui(qi,x) (2.16)

2.3 Physical Significance of Abstraction
In this section, abstraction x defined previously is explained with it’s physical significance.
For an arbitrary q ∈ Q , the group part g of the abstract state x = (g,s) is defined by g =
(R,µ) ∈ G = SE(2). The shape s is modeled by characterizing the distribution of robots about
their mean position. The centroid of the group in world frame {W} is given by:

µ =
1
N

N

∑
i=1

qi ∈ R2 (2.17)

Let us define any point ri in the abstract space x as follows,

ri = [xi,yi] = RT (qi−µ) (2.18)

that satisfy
N

∑
i=1

xiyi = 0 (2.19)

meaning the distribution of robots in the abstract space is such that off-diagonal elements
of the co-variance matrix of the distribution of the robots are zero.The parameterization R is
defined by:

R =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
∈ R2. (2.20)
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Since we are dealing with shapes in 2-D, s = (s1,s2), defined by:

s1 =
1

N−1

N

∑
i=1

x2
i

s2 =
1

N−1

N

∑
i=1

y2
i (2.21)

Since R ∈ SO(2) is one dimensional (1-D) i.e. 1 Degree of Freedom (DOF); θ is sufficient
to describe R, the dimension of the abstract manifold, M = (g,s) = (R,µ,s),µ ∈ R2,s ∈ R2 is
n=5, independent of the number of robots N.

Let us now study the physical significance of the abstraction φ . In a planar case, the co-
variance matrix Σ and the inertia Tensor Γ in world frame W is defined as:

Σ =
1

N−1

N

∑
i=1

(qi−µ)(qi−µ)T (2.22)

Σ =
1

N−1

N

∑
i=1

(
(qi−µ)x
(qi−µ)y

)(
(qi−µ)x (qi−µ)y

)
(N−1)Σ =

N

∑
i=1

(
(qi−µ)x
(qi−µ)y

)(
(qi−µ)x (qi−µ)y

)
(N−1)Σ =

N

∑
i=1

(
(qi−µ)2

x (qi−µ)x(qi−µ)y
(qi−µ)x(qi−µ)y (qi−µ)2

y

)
(N−1)E3ΣE3 =

N

∑
i=1

E3

(
(qi−µ)2

x (qi−µ)x(qi−µ)y
(qi−µ)x(qi−µ)y (qi−µ)2

y

)
E3

(N−1)E3ΣE3 =
N

∑
i=1

(
0 −1
1 0

)(
(qi−µ)2

x (qi−µ)x(qi−µ)y
(qi−µ)x(qi−µ)y (qi−µ)2

y

)(
0 −1
1 0

)
−(N−1)E3ΣE3 =

N

∑
i=1

(
(qi−µ)2

y −(qi−µ)x(qi−µ)y
−(qi−µ)x(qi−µ)y (qi−µ)2

x

)
Γ =− (N−1)E3ΣE3 (2.23)

respectively, where E3 =

(
0 −1
1 0

)
. Here, ET

3 = E−1
3 = −E3 and Γ and Σ have the same

eigenstructure. The geometric interpretation can be done in 2 ways shown as follows.

2.3.1 Spanning Rectangle:
µ (2.17) and Γ (2.23) can be seen as the centroid and inertia tensor of the system of particles
with respect to centroid and orientaion of world frame W . Now, let B denote a virtual frame
with pose (position and orientation) g = (R,µ) in W . Then ri is the expression of qi−µ in the
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virtual frame B. The rotation R defines the orientation of the local frame B such that the inertia
tensor of the system of points ri in B is diagonal i.e

I =
N

∑
i=1

(
x2

i 0
0 y2

i

)
(2.24)

It can be clearly seen from above that (N−1)s1 and (N−1)s2 (using (2.21)) are the eigen-
values of the tensor I and are, therefore, measures of the spatial distribution of the robots along
the axis of the local frame B.

It is interesting to note that the shape variables provide a bound for the region occupied by
the robots. From (2.21), it follows that

|xi| ≤
√
(N−1)s1, |yi| ≤

√
(N−1)s2 (2.25)

The conclusion can be stated as follows. An ensemble of N robots described by a five-
dimensional (5-D) abstract variable x = (g,s) = (R,µ,s1,s2) is enclosed in a rectangle centered
at µ and rotated by R ∈ SO(2) in the world frame W. The sides of the rectangle are given by
2
√

(N−1)s1 and 2
√

(N−1)s2. The rectangle described by (R,u,s1,s2) is called the spanning
rectangle.

2.3.2 Concentration Ellipsoid:
µ (2.17) and Γ (2.23) can be interpreted as sample mean and covariance of a random variable
with realizations qi. If the random variable is known to be normally distributed, then, for a
sufficiently large N, µ and Γ converge to the real parameters of the normal distribution. R is the
rotation that diagonalizes the co-variance, and s1 and s2 are the eigenvalues of the diagonalized
co-variance matrix. This means that, for a large number of normally distributed robots, µ,R,s1
and s2 give the pose and semi-axes of a concentration ellipsoid.

For a 2-D case, the probability density function is given by:

p =
1

2π
√
|Σ|

exp [(x−u)T
Σ
−1(x−u)] ∀x ∈ R2

The surface or contour c for a constant probability density p is given by

(x−u)T
Σ
−1(x−u) = c, c =−2ln(1− p) (2.26)

Definition of a constant probability density contour is all x’s that satisfy the expression
above. The ellipse in (2.26), called the equipotential or concentration ellipse, has the property
that p percent of the points are inside it and can be therefore used as a spanning region for
our robots, under the assumption that they are normally distributed. Thus, p percent of a
large number N of normally distributed robots described by a 5-D abstract variable x = (g,s)
is enclosed in an ellipse centered at µ , rotated by R ∈ SO(2) in the world frame W and with
semi-axes

√
cs1 and

√
cs2, where c is given by (2.26).
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2.3.3 Spanning Rectangle vs Concentration Ellipsoid:
The abstraction based on the spanning rectangle as defined in 2.3.1 has the advantage that it
provides a rigorous bound for the region occupied by the robots and does not rely on any as-
sumption on the distribution of the robots. The main disadvantage is that this estimate becomes
too conservative when the number of robots is large. The lengths of the sides of the rectangle
scale with

√
N−1, so for a large N the spanning rectangle can become very large, even though

the robots might be grouped around the centroid µ . Thus, it would be inefficient for large
number of robots.

On the other hand, the size of a concentration ellipsoid as defined in 2.3.2 does not scale
with the number of robots, which makes this approach very attractive for very large N. How-
ever, it has the disadvantage of assuming a normally distributed initial configuration of the team
and does not provide a rigorous bound for the region occupied by the robots. Approximately
speaking, the number of robots left out of the ellipse is given by (1− p)N. Increasing p will
decrease the number of the robots being outside but will also increase the size of the ellipsoid.
Hence, an ellipsoid would be suitable for different values of N while maintaining it’s size by
changing the value of c based on p.

To have an idea of what is a “large” number N for which the second approach is more
feasible, note that the spanning rectangle and the rectangle in which the concentration ellipsoid
is inscribed are similar and the ratio is

√
(N−1)/c. The ratio of their areas is therefore (N−

1)/c. For example, if p = 0.99, we have c = 9.2103 (from [5]), and the spanning rectangle
becomes larger for N ≥ 11. If N = 100, the area of the spanning rectangle is 10.7488 larger
than the area of the rectangle circumscribing the ellipse, and only one robot might be left out
of the ellipse. Thus, in our report we consider the formation to be spanned by an ellipse.

2.4 Detectable Behaviours and Decoupling of Group and Shape
In this section, under the assumption that the configuration space Q is equipped with a Eu-
clidean metric, the author constructs detectable behaviors and decoupled control systems for
group g and shape s as required by the Problem in 2.1.1 defined above. From (2.19), we can
do the following calculations:

N

∑
i=1

xiyi = 0

N

∑
i=1

2xiyi = 0

N

∑
i=1

(
xi yi

)(yi
xi

)
= 0

N

∑
i=1

(
xi yi

)(0 1
1 0

)(
xi
yi

)
= 0

N

∑
i=1

(
xi yi

)
E1

(
xi
yi

)
= 0 (2.27)
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where E1 =

(
0 1
1 0

)
.

Now [xi,yi]
T = RT (qi−µ), hence [xi,yi] = (qi−µ)T R. Substituting this in (2.27), gives:

N

∑
i=1

(qi−µ)T RE1RT (qi−µ) = 0 (2.28)

Let us define few matrices which are going to be used further in the report I2,E2,H1,H2,H3:

I2 =

(
1 0
0 1

)
E1 =

(
0 1
1 0

)
E2 =

(
1 0
0 −1

)
E3 =

(
0 −1
1 0

)
H1 = I2 +R2E2

H2 = I2−R2E2

H3 = R2E1 (2.29)

Now, by small manipulation, RE1RT = R2E1. Hence, the equation (2.28) becomes

N

∑
i=1

(qi−µ)T R2E1(qi−µ) = 0

N

∑
i=1

(qi−µ)T H3(qi−µ) = 0 (2.30)

Similar transformations can be applied on the shape variables s1 and s2 to get its equivalent
form in world frame W . (2.21) takes the form

11



s1 =
1

(N−1)

N

∑
i=1

x2
i

=
1

2(N−1)

N

∑
i=1

2x2
i

=
1

2(N−1)

N

∑
i=1

x2
i + x2

i

=
1

2(N−1)

N

∑
i=1

(
xi yi

)(xi
yi

)
+
(
xi yi

)( xi
−yi

)
=

1
2(N−1)

N

∑
i=1

(
xi yi

)(xi
yi

)
+
(
xi yi

)(1 0
0 −1

)(
xi
yi

)
=

1
2(N−1)

N

∑
i=1

(
xi yi

)(xi
yi

)
+
(
xi yi

)
E2

(
xi
yi

)
=

1
2(N−1)

N

∑
i=1

(qi−µ)T RRT (qi−µ)+(qi−µ)T RE2RT (qi−µ)

=
1

2(N−1)

N

∑
i=1

(qi−µ)T (qi−µ)+(qi−µ)T RE2RT (qi−µ)

s1 =
1

2(N−1)

N

∑
i=1

(qi−µ)T (I2 +RE2RT )(qi−µ)

=
1

2(N−1)

N

∑
i=1

(qi−µ)T (I2 +R2E2)(qi−µ)

s1 =
1

2(N−1)

N

∑
i=1

(qi−µ)T H1(qi−µ)

Thus we have,

s1 =
1

2(N−1)

N

∑
i=1

(qi−µ)T H1(qi−µ)

s2 =
1

2(N−1)

N

∑
i=1

(qi−µ)T H2(qi−µ) (2.31)

Since the rotation R is parameterized by θ the amount of rotation is restricted to θ ∈
(−π/2,π/2), a unique solution of

N

∑
i=1

(qi−µ)T R2E1(qi−µ) = 0

is given by,

R2 =

(
(qi−µ)T E2(qi−µ) −(qi−µ)T E1(qi−µ)

1 (qi−µ)T E2(qi−µ)

)
(2.32)
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But,

R2 =

(
cosθ −sinθ

sinθ cosθ

)(
cosθ −sinθ

sinθ cosθ

)
R2 =

(
cos2 θ − sin2

θ −2cosθ sinθ

1 cos2 θ − sin2
θ

)
R2 =

(
cos2θ −sin2θ

1 cos2θ

)
(2.33)

Hence, comparing the two equations (2.32) and (2.33), and since tan2θ = sin2θ

cos2θ
we get

tan(2θ) =
(qi−µ)T E1(qi−µ)

(qi−µ)T E2(qi−µ)

θ =
1
2

arctan2((qi−µ)T E1(qi−µ),(qi−µ)T E2(qi−µ)) (2.34)

where notation arctan2(Y,X) = tan−1(Y/X) is restricted to take values in (−π,π). Thus
set of detectable behaviors (2.9) for map φ is given by (2.17), (2.31), and (2.34).

Since the co-distributions as defined in (2.6) are

Ωg = span{dµ,dθ}, Ωs = span{ds1,ds2}

and the control distributions corresponding to ∆̄g and ∆̄s are given by

∆̄g = span{X µ
q ,Xθ

q } (2.35)

∆̄s = span{X s1
q ,X s2

q } (2.36)

where

X µ
q =


I2
.
.
.
I2

 (2.37)

Xθ
q =


H3(qi−µ)

.

.

.
H3(qi−µ)

 (2.38)

X s1
q =


H1(qi−µ)

.

.

.
H1(qi−µ)

 (2.39)

X s2
q =


H2(qi−µ)

.

.

.
H2(qi−µ)

 (2.40)
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Thus, in accordance with (2.9), point 1 of Problem defined in 2.1.1 is satisfied if the be-
haviours are restricted to the set ∆̄g + ∆̄s as given by (2.37) - (2.40).

In order for the control directions to be independent of each other, we need to have ∆̄g and
∆̄s orthogonal to each other so that decoupled controls can be designed for group and shape in
accordance with point 3 of the Problem 2.1.1.

It is easy to see that the two columns of X µ
q are orthogonal. Xθ

q , X s1
q and X s2

q are orthogonal
to X µ

q by the definition of µ (2.17). Since H1H2 = 0, X s1
q and X s2

q are also orthogonal. Combin-
ing H2H3 = H3+E3, ET

3 =−E3 with (2.30), Xθ
q is orthogonal to both X s1

q and X s2
q . Thus, it can

be said that ∆̄g and ∆̄s are orthogonal. Thus, point 3 of Problem 2.1.1 is verified. Also, since
the control directions X µ

q ,Xθ
q ,X

s1
q ,X s2

q are chosen as the basis for ∆̄g and ∆̄s as defined in (2.35)
and (2.36), each of the formation variables can be individually controlled. These individual
control laws are discussed in the next section.

2.5 Individual Control Laws
In this section, control laws are defined and evaluated based on the conditions shown in pre-
vious sections. The control laws are based on the architecture shown in Figure 2.1 with some
modifications. According to the figure, the control law determined by the controller Ci for
each robot Ri is only dependent on its state qi and the abstract state a which is updated by an
observer. This observer does the job of collecting information (states qi) from all the robots
and updating the abstract state x according to the mapping defined by φ . The Abstract motion
planner prescribes the desired abstract final trajectory ad and the desired speed of convergence
ka. Thus, this architecture involves minimum communication between robots. But, there is a
major drawback in this method as it does not consider the collision free environment for robots
i.e movement of robots are based on their previous sate and previous abstract state and thus one
robot does not know in what direction the other robot is moving and will only come to know
of the other robots position after they have moved. Thus collision cannot be avoided using this
architecture. The solution to this is addressed in CHAPTER 3 and CHAPTER 4.

From (2.35) and (2.36), we have

Ẋ = span{∆̄g, ∆̄s}
Ẋ = span{X µ

q ,Xθ
q ,X

s1
q ,X s2

q }

We know that from (2.11)

dφ q̇ = ẋ

and ẋ = (u̇, θ̇ , ṡ1ṡ2). In Matrix form, it can be written as

ẋ =


u̇
θ̇

ṡ1
ṡ2


5x1

q̇ =


q̇1
q̇2
.
.
.

q̇N


Nx1

dφ =


dφ1
dφ2
dφ3
dφ4


5xN

(2.41)
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Figure 2.1: Control and Communication Architecture

Thus, substituting this in (2.11), we get


u̇
θ̇

ṡ1
ṡ2

=


dφ1
dφ2
dφ3
dφ4


5xN


q̇1
q̇2
.
.
.

q̇N


Nx1

(2.42)

Note that, µ and dφ are having two rows each for x and y dimensions. From the previous
values of µ (2.17), θ (2.34) and s1,s2 (2.31), we have

µ =
1
N

N

∑
i=1

qi

dµ =
1
N

N

∑
i=1

I2q̇i

µ̇ =
1
N
[I2...I2]2xN q̇Nx1 (2.43)

and

s1 =
1

2(N−1)

N

∑
i=1

(qi−µ)T H1(qi−µ)

ds1 =
1

(N−1)

N

∑
i=1

(qi−µ)T H1q̇i

ṡ1 =
1

(N−1)
[(q1−µ)T H1....(qN−µ)T H1]2xN q̇Nx1 (2.44)
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and

s2 =
1

2(N−1)

N

∑
i=1

(qi−µ)T H2(qi−µ)

ds2 =
1

(N−1)

N

∑
i=1

(qi−µ)T H2q̇i

ṡ2 =
1

(N−1)
[(q1−µ)T H2....(qN−µ)T H2]2xN q̇Nx1 (2.45)

and

dθ =
1

(N−1)(s1− s2)

N

∑
i=1

(qi−µ)T H3q̇i

θ̇ =
1

(N−1)(s1− s2)
[(q1−µ)T H3....(qN−µ)T H3]2xN q̇Nx1 (2.46)

Combining these with (2.42) we get,

dφ =


I2
N ... I2

N
1

(N−1)(s1−s2)
(q1−µ)T H3 ... 1

(N−1)(s1−s2)
(qN−µ)T H3

1
(N−1)(q1−µ)T H1 ... 1

(N−1)(qN−µ)T H1
1

(N−1)(q1−µ)T H2 ... 1
(N−1)(qN−µ)T H2


It can be rewritten as

dφ =
1

N−1


N−1

N I2 ... N−1
N I2

1
(s1−s2)

(q1−µ)T H3 ... 1
(s1−s2)

(qN−µ)T H3

(q1−µ)T H1 ... (qN−µ)T H1
(q1−µ)T H2 ... (qN−µ)T H2

 (2.47)

In previous section it was shown that X µ
q ,Xθ

q ,X
s1
q ,X s2

q are mutually orthogonal to each other.
Thus, changing one does not affect the other parameter. It can also be interpreted as controlling
each variable individually without affecting the other. Using (2.14) and (2.47), we can write,

q̇i = dφ
T (dφdφ

T )−1ẋ

q̇i = µ̇X µ
q +

s1− s2

s1 + s2
θ̇Xθ

q +
1

4s1
ṡ1X s1

q +
1

4s1
ṡ2X s2

q

q̇i = µ̇ +
s1− s2

s1 + s2
H3(qi−µ)θ̇ +

1
4s1

H1(qi−µ)ṡ1 +
1

4s1
H2(qi−µ)ṡ2

ui = µ̇ +
s1− s2

s1 + s2
H3(qi−µ)θ̇ +

1
4s1

H1(qi−µ)ṡ1 +
1

4s1
H2(qi−µ)ṡ2 (2.48)

The above control law, fits the diagram 2.1 wherein each robot implements a controllers
that depends on it’s own state and the abstract dimensional state x. We are converting the given
state to abstract state at each instant of time and finding the optimal control law and then obtain
the equivalent control law in world frame and apply it to the robot.

IMPORTANT NOTES:
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1. Case when s1 = 0 and s2 = 0 is not defined by the above control law. The abstract behav-
ior should be designed such that s1 > 0 and s2 > 0,∀t. This has a physical significance.
When s1 = 0,s2 = 0, all the robots are on the origin of the virtual frame. This would be
a degenerate case.

2. Case when s1 = s2. For this case, the derivative of θ is not defined. Physically, this
would mean that the robots are equally distributed along the axes of the virtual frame
and thus there would not be any information regarding the orientation of the robots in
the virtual frame as in this would be circle. For circle, there are no major and minor
axes. This would mean that there are infinitely many combinations of axes that can be
obtained from the circle. Thus, no orientation information can be obtained when s1 = s2.
Mathematically, the equations (2.31) and (2.34) are not defined for s1 = s2 case.

2.6 Abstraction
Previous chapter gave the control law (2.48) which will be implemented by the controller Ci
for each robot. For every instant of time, the observer collects states qi from all the robots and
updates the abstract state x for that instant of time according to the equations (2.17), (2.31),
(2.34) and sends it to all the controllers. For the next instant of time, each controller knows
where other robots are through the abstract state x as updated by the observer, and thus based
on this information and its current state qi, a control signal is generated in the virtual frame
perspective and applied to each robot and is updated to the observer as provided by the equation
(2.48). This process repeats until the desired abstract state is reached. As mentioned earlier, this
does not take into account the safety requirement of robots i.e. inter-robot collision mechanism
does not exist in the architecture. This will be addressed in later part of the report.

If the goal is to move the robots from their arbitrary initial positions qi(0) to final rest
positions of desired mean µd , orientation θ d , and shape sd

1 and sd
2 , an appropriate choice of the

control vector field ẋ = [µ̇, θ̇ , ṡ1, ṡ2] on the abstract manifold M is

µ̇ =Kµ(µ
d−µ)

θ̇ =kθ (θ
d−θ)

ṡ1 =ks1(s
d
1− s1)

ṡ2 =ks2(s
d
2− s2) (2.49)

where Kµ ∈R2x2 is a positive definite matrix and kθ ,ks1,2 > 0. In general task of each robot
is to follow a desired trajectory xd(t) = [µd(t),θ d(t),sd

1(t),s
d
2(t)] on M. Thus control vector

field on M can be of the form

µ̇ = Kµ(µ
d(t)−µ(t))+ µ̇

d(t)

θ̇ = kθ (θ
d(t)−θ(t))+ θ̇

d(t)

ṡ1 = ks1(s
d
1(t)− s1(t))+ ṡd

1(t)

ṡ2 = ks2(s
d
2(t)− s2(t))+ ṡd

2(t) (2.50)

Later in Proposition 2 2.6 we show (using Lyapunov stability criteria) that the control law
is designed in such a way that the system stabilizes once it converges to the desired state. This
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is also proved in the simulations. Thus µ̇d(t) = 0, θ̇ d(t) = 0, ṡd
1(t) = 0, ṡd

2(t) = 0. It is impor-
tant to note that the (2.50) only guarantees the desired behavior in the abstract manifold M. If
the imposed trajectory xd(t) is bounded at all times, x(t) is bounded. But, it is also required
that the system defined by q in the configuration space Q is also bounded. Thus the following
proposition is proposed.

Proposition 1: If abstract state x is bounded, then the system defined by qi, i = 1,2, ....,N
in the configuration space Q, is also bounded.

Proof : x is bounded when µ,s1,s2 are bounded. Thus, we need to show that qi is bounded
if µ,s1,s2 are bounded. Let us consider that µ,s1,s2 are bounded. Therefore,

‖µ−µ
d‖ ≤Mµ (2.51)

|s1− sd
1| ≤Ms1 (2.52)

|s2− sd
2| ≤Ms2 (2.53)

From (2.31), we can obtain the following:

s1 + s2 =
1

N−1

N

∑
i=1

(qi−µ)T (qi−µ)

(N−1)(s1 + s2) =
N

∑
i=1

(qi−µ)T (qi−µ) (2.54)

Thus, using (2.52) and (2.53) and noting that LHS is the norm of (qi−µ), we can write:

‖(qi−µ)‖ ≤
√

N(s1 + s2)

≤
√

(N−1)(Ms1 +Ms2 + sd
1 + sd

2) (2.55)

Now, using (2.51), we can write

‖qi−µ
d‖= ‖qi−µ +µ−µ

d‖
≤ ‖qi−µ‖+‖µ−µ

d‖

‖qi−µ
d‖ ≤

√
(N−1)(Ms1 +Ms2 + sd

1 + sd
2)+Mu (2.56)

This shows that if µ,s1,s2 are bounded, qi is also bounded. From this proof it can be con-
cluded that the system defined by q is bounded given that the abstract state x is bounded. This
showed the boundness of configuration space also, but we also need to ensure that the system
is stable once it reaches the desired state i.e. is the desired state an equilibrium state for the
abstract state x? Also, how does the system converge to the desired state? The following proof
demonstrates the answers to these queries.

Proposition 2: For any ud,θ d,sd
1,s

2
d , the closed loop system globally asymptotically converges

to the equilibrium manifold µ = µd,θ = θ d,s1 = sd
1,s2 = s2

d .

Proof : We need to show that µ̇d(t) = 0, θ̇ d(t) = 0, ṡd
1(t) = 0, ṡd

2(t) = 0, i.e. the system is
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stable once it reaches the desired state and thus conclude that the desired state is an equilibrium
state. When each robot is in equilibrium, i.e. (q̇i) = 0, i = 1, ...,N, the abstract state is also in
equilibrium i.e. ẋ = 0. This can be easily seen from equations, where all the state variables
dθ ,dµ,ds1,ds2 or equivalently written as θ̇ , µ̇, ṡ1, ṡ2 are dependent on q̇i

µ =
1
N

N

∑
i=1

qi

dθ =
1

(N−1)(s1− s2)

N

∑
i=1

(qi−µ)T H3q̇i

ds1 =
1

(N−1)

N

∑
i=1

(qi−µ)T H1q̇i

ds2 =
1

(N−1)

N

∑
i=1

(qi−µ)T H2q̇i

ui = µ̇ +
s1− s2

s1 + s2
H3(qi−µ)θ̇ +

1
4s1

H1(qi−µ)ṡ1 +
1

4s1
H2(qi−µ)ṡ2 (2.57)

Now to prove the asymptotic convergence, a Lyapunov function is considered as follows:

V (q) =
1
2
‖µd−µ‖2 +

1
2
(θ d−θ)2 +

1
2
(sd

1− s1)
2 +

1
2
(sd

2− s2)
2 (2.58)

Next, it’s derivative along the vector field on Q is considered as:

V̇ (q) =−Kµ‖µd−µ‖2− kθ (θ
d−θ)2− ks1(s

d
1− s1)

2− ks2(s
d
2− s2)

2 (2.59)

where, Kµ ,kθ ,ks1,ks2 > 0 and Kµ > 0 is meant in the positive definite sense. Thus, V̇ (q)≤
0,∀q ∈ R2N . Also, V (q) is a Lyapunov function candidate because its derivative converges
to zero for all qi, and V̇ = 0 only when the states reach their desired state, i.e. µ = µd,θ =
θ d,s1 = sd

1,s2 = s2
d , which is an invariant set for the closed loop system i.e desired position is

not changed once set (it is not dynamic). According to the global invariant set theorem from
LaSalle, the set must converge to the largest invariant set, i.e. V (q)→ ∞ as ‖q‖→ ∞.

Proposition 3: LaSalle’s theorem applies to the invariant set µ = µd,θ = θ d,s1 = sd
1,s2 = s2

d
and thus V (q)→ ∞ as ‖q‖→ ∞.

Proof : Proof by method of contradiction, i.e. we will show that if an assumption that as
‖q‖→∞ is made, and if V (q) does not tend to ∞, the assumption that ‖q‖→∞ is contradicted.
Thus, as ‖q‖→ ∞, V (q)→ ∞.

Suppose, ‖q‖→∞ and ∃ some L > 0 such that V (q)< L, i.e. V (q) 6→∞. This would imply
that the states are bounded and is given by

‖µ−µ
d‖ ≤

√
2L

|s1− sd
1| ≤
√

2L

|s2− sd
2| ≤
√

2L (2.60)
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Similar to Proposition 2 in 2.6, it can be shown that

‖qi−µ
d‖ ≤

√
(N−1)(2

√
2L+ sd

1 + sd
2)+
√

2L (2.61)

This means that all qi are bounded ∀i = 1, .....,N. But, it was assumed in the beginning that
‖q‖→∞. This would imply that for at least one i= 1, .....,N, ‖qi‖→∞. This is a contradiction.
Thus, V (q)→ ∞ as ‖q‖→ ∞.
This proves that the choice of states in (2.49) is stable once is reaches the desired state and it
reaches the desired state by converging asymptotically.
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Chapter 3

MOVING FRAME

This section deals with the application of the concept demonstrated earlier to a moving frame
and obtaining control laws from moving frame B back to the world frame or inertial frame W .

Let’s define a moving frame B as shown in Figure 3.1 whose origin is at the centroid of the
world frame, by requiring the orientation to be such that the coordinates of the robots in this
frame,

pi = [xi,yi] = RT (qi−µ) (3.1)

satisfy
N

∑
i=1

xiyi = 0 (3.2)

where the parameterization is defined by:

R =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
∈ R2. (3.3)

Hence, the distribution of the robots in this local frame is approximated by the inertia ten-
sor(assuming uniform unit mass) or by matrix of second moments or co-variance matrix:

I = pi pT
i =

(
I11 0
0 I22

)
(3.4)

Since we are dealing with shapes in 2-D, s = (s1,s2) is taken to be proportional to the
diagonal elements:

s1 = kI11 =
1

N−1

N

∑
i=1

x2
i

s2 = kI22 =
1

N−1

N

∑
i=1

y2
i (3.5)

where k > 0. It is easy to observe that when k is chosen as 1
N−1 , s1 and s2 are geometrically

equivalent to semi-major and semi-minor axes of an ellipse which encompasses set of points
that satisfy normal distribution. In this case, the set of points are groups of robots which are on
a plane.
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Figure 3.1: Frame B is fixed to the robots and moves with them and is oriented with respect to
world frame W by θ .

Since R ∈ SO(2) is one dimensional (1-D) i.e. 1 Degree of Freedom (DOF); θ is sufficient
to describe R, the dimension of the abstract manifold, M = (g,s) = (R,µ,s),µ ∈ R2,s ∈ R2

is n=5, independent of the number of robots N. Here, g is the position and orientation of the
moving frame B, given by:

g =

cos(θ) −sin(θ) µ1
sin(θ) cos(θ) µ2

0 0 1

 (3.6)

where µ = (µ1,µ2) are the components of the centroid of the inertial frame and shape
s = (s1,s2).

3.1 Dynamics of the Moving Frame
Now that a moving frame is defined, we would want control laws for robots in this frame. At
any point x = (g,s) ∈M in the abstract space, the derivative in the moving frame is given by

ẋ =
(

ġ
ṡ

)
=

(
g 0
0 I2

)(
ξ

σ

)
(3.7)

Here, ẋ = (ġ, ṡ) is the time derivative of the abstract space in the inertial frame and ζ =
(ξ ,σ) is the time derivative in the moving frame B and

Γ =

(
g 0
0 I2

)
(3.8)

is a non-singular 5x5 transformation matrix. From this transformation matrix we can now
relate the control law in the moving frame with the control law in the inertial frame. If vi is the
robot velocity in frame B, the inertial frame velocity is given by ui = Rvi. From this we get the
relation for v given by vi = RT ui. From (2.11) and (2.47), we have,
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ẋ = dφ q̇(
g 0
0 I2

)(
ξ

σ

)
= dφu

(
g 0
0 I2

)(
ξ

σ

)
= k


N−1

N I2 ... N−1
N I2

1
(s1−s2)

(q1−µ)T H3 ... 1
(s1−s2)

(qN−µ)T H3

(q1−µ)T H1 ... (qN−µ)T H1
(q1−µ)T H2 ... (qN−µ)T H2

u

(
g 0
0 I2

)(
ξ

σ

)
= k


N−1

N I2 ... N−1
N I2

1
(s1−s2)

(q1−µ)T R2E1 ... 1
(s1−s2)

(qN−µ)T R2E1

(q1−µ)T (I2 +R2E2) ... (qN−µ)T (I2 +R2E2)
(q1−µ)T (I2−R2E2) ... (qN−µ)T (I2−R2E2)

u

(
g 0
0 I2

)(
ξ

σ

)
= k


N−1

N I2 ... N−1
N I2

1
(s1−s2)

(q1−µ)T R2E1 ... 1
(s1−s2)

(qN−µ)T R2E1

(q1−µ)T +(q1−µ)T R2E2) ... (qN−µ)T +(qN−µ)T R2E2)
(q1−µ)T − (q1−µ)T R2E2) ... (qN−µ)T − (qN−µ)T R2E2)

u

(
g 0
0 I2

)(
ξ

σ

)
= k


1

kN I2 ... 1
kN I2

1
(s1−s2)

pT
1 E1RT ... 1

(s1−s2)
pT

NE1RT

(q1−µ)T + pT
1 E2RT ... (qN−µ)T + pT

NE2RT

(q1−µ)T − pT
1 E2RT ... (qN−µ)T − pT

NE2RT

Rv

(
ξ

σ

)
=

(
g 0
0 I2

)−1

k


1

kN I2R ... 1
kN I2R

1
(s1−s2)

pT
1 E1RT R ... 1

(s1−s2)
pT

NE1RT R
(q1−µ)T + pT

1 E2RT R ... (qN−µ)T + pT
NE2RT R

(q1−µ)T − pT
1 E2RT R ... (qN−µ)T − pT

NE2RT R

v

(
ξ

σ

)
= k


1

kN I2 ... 1
kN I2

1
(s1−s2)

pT
1 E1 ... 1

(s1−s2)
pT

NE1

pT
1 + pT

1 E2 ... pT
N + pT

NE2
pT

1 − pT
1 E2 ... pT

N− pT
NE2

v

(
ξ

σ

)
= k


1

kN I2 ... 1
kN I2

1
(s1−s2)

pT
1 E1 ... 1

(s1−s2)
pT

NE1

pT
1 (I2 +E2) ... pT

N(I2 +E2)
pT

1 (I2−E2) ... pT
N(I2−E2)




v1
.
.
.

vN

 (3.9)

The minimum-energy solution to the above equation is analogous to (2.48) and can be
written as

v∗ = dφ
T (dφdφ

T )−1
ζ (3.10)
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and this can be simplified as shown in (2.48) as,

v∗i = ξ̇ +
s1− s2

s1 + s2
E1 piξ3 +

1
4s1

(I2 +E2)piσ1 +
1

4s2
piσ2

v∗i =
(

ξ̇1

ξ̇2

)
+

s1− s2

s1 + s2
E1 piξ3 +

1
4s1

(I2 +E2)piσ1 +
1

4s2
(I2−E2)piσ2 (3.11)

We now have the control law that defines the movement of robots in local frame B confining
them to a particular shape as defined by σ1 and σ2. But, there is a drawback to this method of
choosing control law. It does not provide any rules for collision avoidance, i.e. there are no
conditions on the robots to avoid collision while achieving the desired orientation and position
while satisfying the constraint of an ellipse. Thus, we need to deal with collision avoidance for
safe movement of robots.

3.2 Collision Avoidance
For collision avoidance, a safe separation distance is considered between each robots. The safe
separation distance is a summation of the diameter of the robot plus a specified safety region
to avoid collision between the robots. Each bot gets the information of all its neighbouring
bots. In order to satisfy the condition of collision the following inequality constraint has to
hold good.

ε = 2ρ + εs (3.12)

where ρ is the radius of each robot and εs is the safety separation distance. Here, radius
of the robot does not necessarily mean that the robot is circular, it’s just an outer boundary
covering each robot.

The inequality constraint will be considered in the optimization problem only when the
magnitude of the distance is lesser than equal to the safe separation distance between each of
the neighbours. On satisfying the inequality constraint, the robots do not converge and collide
against each other and this ensures collision free mechanism. The separation distance between
any two robots using their reference points is given as:

δi j = ‖pi− p j‖ (3.13)

If a neighbourhood Ni is defined as the set of all robots that are sensed by the robot i, to
ensure collision free movement of robots, we need to have

(pi− p j).(vi− v j)
T ≥ 0 ∀ j ∈Ni (3.14)

when δi j ≤ ε

NOTE: We used the condition mentioned above that is different from what the author has
given:

(pi− p j).(vi− v j)≥ 0 (3.15)

As per our analysis the simulations work for (3.14). (3.15) does not match in the proof of
Proposition 6: 4.2.1.
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3.3 Asymptotic Convergence to a Desired State
Let xdes be the desired abstract state. The author has considered the desired abstract state to be
time invariant. This implies that there is no change in the desired state once the robots are fed
the desired state as an input i.e. there is no dynamic change in the desired state. Once the robots
reach their desired state, another desired state can be given as an input but this input cannot be
given before the robots achieve their current desired state. There are several ways to achieve
the desired state, but the easiest and safest option when multi-robot system is considered is to
converge the state error x̃ = (xdes− x) exponentially to zero. Thus, the equivalent state can be
written as

ẋ = Kx̃ (3.16)

where K is any positive definite matrix. When xdes = 0, we are at equilibrium, thus x̃ = 0.
It was shown earlier that ẋ = Γζ . Thus, the above expression can be written as:

ζ = Γ
−1Kxdes (3.17)

When this condition is plugged in (3.11), we obtain robot velocities that guarantee globally
asymptotic convergence to any abstract state.

We have following conditions that the robot velocities/control inputs must satisfy

1. the minimum-energy solution condition; done in (3.11)

2. state to converge monotonically to an abstract state

3. robots to avoid inter-robot collisions given by (3.14)
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Chapter 4

CONTROL WITH COLLISION
AVOIDANCE

4.1 Monotonic Convergence
The author has not considered the exact exponential convergence to an abstract state. This is
reasonable as the minimum-energy solution obtained may not satisfy the safety constraints al-
ways and it doesn’t the collision avoidance will not work. Thus, he finds a solution closest to
minimum-energy solution that satisfies safety constraints.

The error in the abstract case decreases monotonically, thus we have:

x̃T Kẋ≥ 0 (4.1)

Substituting for ẋ, we get

x̃T KΓ


I2 ... I2

1
(s1−s2)

pT
1 E1 ... 1

(s1−s2)
pT

NE1

pT
1 (I2 +E2) ... pT

N(I2 +E2)
pT

1 (I2−E2) ... pT
N(I2−E2)




v1
.
.
.

vN

≥ 0 (4.2)

Thus, each robot should satisfy the condition

x̃T KΓ


I2

1
(s1−s2)

pT
i E1

pT
i (I2 +E2)

pT
i (I2−E2)

vi ≥ 0 (4.3)

Thus, if all the robots satisfy control law as given by (3.11), the error in the abstract state
will monotonically decrease. It is interesting to note that, minimum-energy control law satisfies
the above condition. Thus, while finding the solution closest to minimum-energy control law
solution, we ensure that it still monotonically decreases the error in the abstract state.
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Proposition 4: The minimum-energy control law (3.11) with ζ given by (3.17) satisfies the
monotonic convergence condition (4.3).

Proof. We define gi and mi such that

gi =
[
I2,

1
s1− s2

pT
i E1, pT

i (I2 +E2), pT
i (I2−E2)

]T

mi =
[
I2,

s1− s2

s1 + s2
E1 pi,

1
4s1

(I2 +E2)pi,
1

4s2
(I2−E2)pi

]
(4.4)

Substituting (3.11) and (4.4) into the left hand side of (4.3) gives:

x̃T KΓ


I2

1
(s1−s2)

pT
i E1

pT
i (I2 +E2)

pT
i (I2−E2)

vi ≥ 0

x̃T KΓ


I2

1
(s1−s2)

pT
i E1

pT
i (I2 +E2)

pT
i (I2−E2)


4x2

[(
ξ̇1

ξ̇2

)
+

s1− s2

s1 + s2
E1 piξ3 +

1
4s1

(I2 +E2)piσ1 +
1

4s2
(I2−E2)piσ2

]
2x1
≥ 0

x̃T KΓgimi


ξ1
ξ2
ξ3
σ1
σ2

≥ 0

x̃T KΓgimi

(
ξ

σ

)
≥ 0

x̃T KΓgimiζ ≥ 0

x̃T KΓ[gi mi]Γ
−1Kx̃≥ 0 (4.5)
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where

[gi mi] =
[
I2,

1
s1− s2

pT
i E1, pT

i (I2 +E2), pT
i (I2−E2)

]T[
I2,

s1− s2

s1 + s2
E1 pi,

1
4s1

(I2 +E2)pi,
1

4s2
(I2−E2)pi

]


I2
1

s1−s2
pT

i E1

pT
i (I2 +E2)

pT
i (I2−E2)

(I2
s1−s2
s1+s2

E1 pi
1

4s1
(I2 +E2)pi

1
4s2

(I2−E2)pi

)


I2
s1−s2
s1+s2

E1 pi
1

4s1
(I2 +E2)pi

1
4s2

(I2−E2)pi
1

s1−s2
pT

i E1
1

s1+s2
pT

i E2
1 pi

1
4s1(s1−s2)

pT
i E1(I2 +E2)pi

1
4s2(s1−s2)

pT
i E1(I2−E2)pi

pT
i (I2 +E2)

s1−s2
s1+s2

pT
i (I2 +E2)E1 pi

1
4s1

pT
i (I2 +E2)

2 pi
1

4s2
pT

i (I2 +E2)(I2−E2)pi

pT
i (I2−E2)

s1−s2
s1+s2

pT
i (I2−E2)E1 pi

1
4s1

pT
i (I2−E2)(I2 +E2)pi

1
4s2

pT
i (I2−E2)

2 pi




I2
s1−s2
s1+s2

E1 pi
1

4s1
(I2 +E2)pi

1
4s2

(I2−E2)pi

1
s1−s2

pT
i E1

1
s1+s2

pT
i

(
0 1
0 1

)
pi

1
4s1(s1−s2)

pT
i

(
0 0
2 0

)
pi

1
4s2(s1−s2)

pT
i

(
0 2
0 0

)
pi

pT
i (I2 +E2)

s1−s2
s1+s2

pT
i

(
0 2
0 0

)
pi

1
4s1

pT
i

(
4 0
0 0

)
pi 0

pT
i (I2−E2)

s1−s2
s1+s2

pT
i

(
0 0
2 0

)
pi 0 1

4s2
pT

i

(
0 0
0 4

)
pi


(4.6)

The 5x5 matrix [gi mi], although asymmetric, is positive semi-definite with two non-zero
eigenvalues shown as follows:

λ1 = 1+
‖pi‖2

s1 + s2
and λ2 = 1+

p2
i,x

s1
+

p2
i,y

s2
(4.7)

K is chosen to be any positive definite matrix and from above we have [gi mi] to be positive
semi-definite and thus (4.5) is satisfied for positive semi-definite condition. Thus, minimum-
energy control law given by (3.11) satisfies the monotonic convergence inequality (4.3).

4.2 Safe Minimum-Energy Control Law
As discussed earlier, the author has considered a solution that is closest to the solution obtained
from minimum-energy control law but still satisfies the monotonic convergence and safety cri-
teria . It is done in the following way:

Proposition 5: Equation (3.11) is a decentralized control law that selects a unique control
input that has the smallest energy instantaneously while satisfying the monotonic convergence
inequality and the safety constraints:

vi = argmin
v̂i
‖v∗i − v̂i‖2 (4.8)

The above equation is subjected to conditions mentioned in equations (3.14) and (4.3).

Proof : The constraints mentioned above provides the safety and monotonic convergence con-
dition. The function being minimized is a slight variation from the actual minimum-energy
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control input. The inequality constraints (3.14) and (4.3) are linear in vi and the function be-
ing minimized is a positive definite quadratic function of vi, the equation (4.8) is a convex,
quadratic problem with a unique solution. We need to remember that each robot relies on it’s
own state and knowledge of error (obtained from observer), thus the control law is decentral-
ized.

4.2.1 Convergence Properties
For showing convergence, a Lyapunov function is considered as follows:

V (q) =
1
2

x̃T x̃ (4.9)

A function is a Lyapunov Function Candidate when

1. it is positive definite i.e. V (q(t))> 0,∀t 6= 0

2. V (0) = 0

3. and has continuous first partial derivatives in a neighborhood of the origin in Rn and

4. V (q(t)) is decreasing for increasing time i.e. V̇ (q)< 0,∀q(t), t > 0

The main idea of Lyapunov stability theory is that, if V (q) is decreasing for increasing time,
and since V acts like a norm, the trajectory of solution of (3.16) must be converging towards
the origin. That would mean x̃ has to converge towards the origin i.e. zero. Thus (4.9) satisfies
the conditions for a function to be considered as a Lyapunov function.

Since the solution of (4.8) must satisfy the inequality (4.3), it can be inferred that x̃T Kẋ≥ 0.
If K, a positive definite matrix is chosen to be a diagonal with positive entries then it implies
that x̃T ẋ≥ 0. This is equivalent to

V̇ (q) =−x̃T ẋ≤ 0 (4.10)

Previously it was showed that q is bounded given x is bounded and that V (q) → ∞ as
‖q‖ → ∞. Also, it was shown that V (q) is asymptotically stable in Proposition 2.6 and Propo-
sition 2.6. Hence, from LaSalle’s principle, abstract state will converge to the largest invariant
set given by x̃T ẋ = 0. From the equation dφ q̇ = ẋ it can inferred that the abstract state x goes
to equilibrium only when input control law is zero i.e. v = 0. Thus, to have v = 0 as the only
solution, the invariant set is characterized by the set of conditions that lead to the system of
inequalities given by (3.14) and (4.3).

Proposition 6: For any desired change in the abstract state x̃, subject to the condition x̃4 > 0,
x̃5 > 0 there is a non-zero solution to the inequalities (3.14) and (4.3).

Subject to the condition when size of the formation is increasing, it is proved that for any
error abstract state x̃, there exists a non-trivial solution of the control law that satisfies the in-
equality constraints.

29



Proof : The solution from the minimum-energy control law is given by:

v∗i =
(

ξ̇1

ξ̇2

)
+

s1− s2

s1 + s2
E1 piξ3 +

1
4s1

(I2 +E2)piσ1 +
1

4s2
(I2−E2)piσ2

v∗i =
(

ξ̇1

ξ̇2

)
+

s1− s2

s1 + s2

(
0 1
1 0

)(
xi
yi

)
ξ3 +

1
4s1

[

(
1 0
0 1

)
+

(
1 0
0 −1

)
]

(
xi
yi

)
σ1 +

1
4s2

[

(
1 0
0 1

)
−
(

1 0
0 −1

)
]

(
xi
yi

)
σ2

v∗i =
(

ξ̇1

ξ̇2

)
+

s1− s2

s1 + s2

(
yi
xi

)
ξ3 +

1
4s1

(
2 0
0 0

)(
xi
yi

)
σ1 +

1
4s2

(
0 0
0 2

)(
xi
yi

)
σ2

v∗i =
(

ξ̇1

ξ̇2

)
+

s1− s2

s1 + s2

(
yi
xi

)
ξ3 +

1
4s1

(
2xi
0

)
σ1 +

1
4s2

(
0

2yi

)
σ2

v∗i =

(
ξ1 +

s1−s2
s1+s2

yiξ3 +
xi

2s1
σ1

ξ2 +
s1−s2
s1+s2

xiξ3 +
yi

2s2
σ2

)
(4.11)

Now, it is proved that the above control law satisfies the inter-robot collision constraints for
every pair of robots (i, j) and the constraint can be written as:

(
(xi− x j) (yi− y j)

)(v∗i,x− v∗j,x
v∗i,y− v∗j,y

)
≥ 0 (4.12)

(
(xi− x j) (yi− y j)

)
(

(
ξ1 +

s1−s2
s1+s2

yiξ3 +
xi

2s1
σ1

ξ2 +
s1−s2
s1+s2

xiξ3 +
yi

2s2
σ2

)
−

(
ξ1 +

s1−s2
s1+s2

y jξ3 +
x j
2s1

σ1

ξ2 +
s1−s2
s1+s2

x jξ3 +
y j
2s2

σ2

)
)≥ 0

(
(xi− x j) (yi− y j)

)( σ1
2s1

(xi− x j)+
s1−s2
s1+s2

(yi− y j)ξ3
σ2
2s2

(yi− y j)+
s1−s2
s1+s2

(xi− x j)ξ3

)
≥ 0

(
(xi− x j) (yi− y j)

)( σ1
2s1

s1−s2
s1+s2

ξ3
s1−s2
s1+s2

ξ3
σ2
2s2

)(
xi− x j
yi− y j

)
≥ 0

(pi− p j)
T

(
σ1
2s1

s1−s2
s1+s2

ξ3
s1−s2
s1+s2

ξ3
σ2
2s2

)
(pi− p j)≥ 0 (4.13)

The above equation is of quadratic form wT Jw and J is symmetric matrix. Now for the
above system to be positive semi-definite, J has to be positive semi-definite, which gives us a
condition on the eigenvalues of J as follows:

det(J−λ I) = 0

det

(
σ1
2s1
−λ

s1−s2
s1+s2

ξ3
s1−s2
s1+s2

ξ3
σ2
2s2
−λ

)
= 0

(
σ1

2s1
−λ )(

σ2

2s2
−λ )− (

s1− s2

s1 + s2
ξ3)

2 = 0

λ
2−λ (

σ1

2s1
+

σ2

2s2
)+

σ1

2s1

σ2

2s2
− (

s1− s2

s1 + s2
ξ3)

2 = 0
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Thus,

λ = (
σ1

s1
+

σ2

s2
)±
√

(
σ1

s1
+

σ2

s2
)2−4((

σ1

s1

σ2

s2
)− (

s1− s2

s1 + s2
ξ3)2)

λ = (
σ1

s1
+

σ2

s2
)±
√

(
σ1

s1
− σ2

s2
)2 +4(

s1− s2

s1 + s2
ξ3)2 (4.14)

The above eigenvalues must satisfy λ ≥ 0 for the matrix to be positive semi-definite. Thus
the following condition is obtained:

λ ≥ 0

(
σ1

s1
+

σ2

s2
)±
√

(
σ1

s1
− σ2

s2
)2 +4(

s1− s2

s1 + s2
ξ3)2 ≥ 0

(
σ1

s1
+

σ2

s2
)≥

√
(
σ1

s1
− σ2

s2
)2 +4(

s1− s2

s1 + s2
ξ3)2 (4.15)

Thus, a condition wherein if the size of the formation is increasing, the solution from the
minimum-energy control law satisfies the inequality constraint is obtained. It was proved in
Proposition 4: 4.1 that the minimum-energy control law satisfies the monotonic convergence
inequality.

In the above proof, only cases when x̃4 > 0, x̃5 > 0 were dealt with. If x̃4 ≤ 0, x̃5 ≤ 0, i.e.
when the shape in the abstract space is shrinking, there is limited guarantee that the minimum-
energy solution satisfies the safety constraint. In other words, when this happens there may
not be a non-zero control law vi, that satisfies the inequalities without restrictions on change
in orientations as shown by Proposition 4: 4.1. It is only in this condition that the system will
reach an equilibrium away from the desired abstract state. This part has been demonstrated by
us in the simulation part. Refer xxxxxx for visualization.

Also, there exists an abstract state x such that the minimum-energy solution given by the
control law (3.11) satisfies any abstract state x̃, because Proposition 6: 4.2.1 mentioned above
comes into application only when the robots are entering the colliding state as described by the
equation 2ρ + εs (3.12).

4.3 Motion Planning
Motion planning is an important part that needs to be addressed while having large number
of robots. Similar to the design of control law for an abstract state and then applying the
transformation to obtain the equivalent control law in the inertial frame, the design of motion
planning follows a similar approach. The abstract representation of the team of robots permits
the planning of motion of robots to consider only the abstract state space rather than a tradi-
tional approach that scales with the number of robots. As the group of robots move from one
position to the desired state, the formation or the ellipsoid encircling the robots change its shape
along the course. Thus, the shape formation is deformable in nature which means the abstract
representation is deformable in nature.

The approach taken in this section is to model the abstract representation as a deformable
body and derive an energy metric associated with rotation, translation and deformation of the
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ensemble shape. The author has also included the ensemble contractions as this is a difficult
case due to the increase in inter-robot communication.

Since, the abstract space is obtained by a surjective mapping φ of the configuration space,
Riemannian metric on the abstract state x can be derived by an inner product on the associated
Lie algebra, g. It is necessary to understand why a Riemannian metric is defined in this case.
A Riemannian metric is a family of smoothly varying inner products on the tangent spaces
of a smooth manifold. In our case of robot ensemble, we are considering φ to be a smooth
mapping from the configuration space to an abstract space and each of these spaces to be
smooth manifolds. Thus, Riemannian metric is an inner product on the tangent spaces, T Q and
T M, where T Q is mapped to T M by dφ . Thus, the abstract manifold M can be equipped with
different Riemannian metrics.

A Riemannian metric on M is defined as a smooth family of inner products on the tangent
space T M ⊂ M. The inner product of tangent vectors ġ1, ġ2 ∈ g ∈ SE(2) is obtained by left
translation property:

〈ġ1 · ġ2〉= 〈g−1ġ1,g−1ġ2〉e (4.16)

where g−1ġ1i are tangent vectors at the identity element e. The above metric is an left
invariant Riemannian metric. Following Zefran et. al. (1998) [6], the inertia tensor of a rigid
body ans it’s kinetic energy is used to define Wg:

Wg =

(
mI2 0
0 I11 + I22

)
(4.17)

in the local frame B. But, the above condition is for rigid shapes. Since, the product
structure M = GxS was previously shown to be consisting of independent sets, the space model
can be treated independently. The a constant metric Ws = αI2 is used to model the cost of the
change in shape of the ensemble. Thus, the rate of change of the abstract shape in the local
frame B is given by ζ and has the norm:

‖ζ‖= 1
2

ζ
T
(

Wg 0
0 Ws

)
ζ (4.18)

which is well-defined everywhere on M.
Now, the potential energy associated with the deformation of shape must be made. The

author has considered a simple approach to create an abstract model for the potential energy.
Since, the deformation involves contraction and expansion of the shape, this process can be
thought of as a reversible, adiabatic process where no energy is lost i.e when the formation
compresses, the internal energy of the system increases and this energy is lost during the ex-
pansion of the formation making the net energy gained or lost equal to null. Hence, the process
is said to be reversible. For such a reversible adiabatic process, pressure p and volume v are
related to each other by the ratio of specific heats γ by the equation:

pvγ = constant (4.19)

and the work done to bring about a change in the volume from v1 to v2 leading to an increase
in internal energy V is given by:

∆V = k
( 1

vγ−1
2

− 1

vγ−1
1

)
(4.20)
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where k is a constant.
In the case of planar robots, instead of volume v, the area of the concentration ellipsoid is

used with unit depth. The area of the concentration ellipsoid is given by the standard formula
for area of an ellipse π

√
s1s2. If s0(N) is considered as a circular shape for N robots with zero

potential energy, the radius of the circular shape r0(N) must increase with N. For simplicity,
we take r0(N) = N ε

2 . Thus, the potential energy is given by:

V (s) = β

( 1
(s1s2)(γ−1)/2

− 1
(r2

0(N))γ−1

)
(4.21)

where β is a constant. Thus, the total energy associated with the configuration is given by :

E(g,s,ζ ) =
1
2

ζ
T
(

Wg 0
0 Ws

)
ζ +V (s) (4.22)

Using the above equation, cost of changes in configuration can be determined using a kinetic
and potential energy.

The author has designed motion plan using discretization of the abstract space by adhering
to the constraints defined by the obstacles. Motion plan determined by a sequence of desired
abstract states is computer via Bellman-Ford search in a discretized abstract space.
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Chapter 5

SIMULATION AND RESULTS

This section details about the simulation of the results of the research paper [2] in MATLAB.
The simulation has been conducted for both point robots and non-holonomic robot defined
by certain radius and axes length. The simulation considers the control of the formation to a
desired abstract state for varying team sizes. The experimental results on real hardware have
not been performed and instead the similar results have been simulated to check its validity.

5.1 Implementation Details

5.1.1 Point Robot
A point robot is controlled to a desired abstract state. The dynamics of the point robot is
dependent on the control velocity ui. The abstract state of the system at each instant of time is
derived using the equations derived in the section 2 of the report. The robots are controlled to
a desired time-invariant abstract state xdes of the system.

The controller design of each robot is based on the current position qi of each robot, abstract
state x of the robot ensemble. The current position and velocity of the adjacent robots are
also considered to take into effect the collision avoidance in the system. The control law is
decoupled, which means change in pose (position and orientation) does not affect the shape
and vice-versa. The final desired abstract state is controlled using a proportional controller as
given with below equations:

µ̇ =Kµ(µ
d−µ)

θ̇ =kθ (θ
d−θ)

ṡ1 =ks1(s
d
1− s1)

ṡ2 =ks2(s
d
2− s2)

where Kµ ∈ R2x2 is a positive definite matrix and kθ ,ks1,2 > 0.

5.1.2 Non-Holonomic Robot
A differential drive robot is a non-holonomic robot as it has a constraint on its velocity that
prevents it from moving in lateral direction instantaneously. The top-view of the robot which
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Figure 5.1: Differential drive robot being simulated.

is simulated is shown in Figure 5.1. Here, P is the reference point whose position is regulated
by the vector fields and updated for every instant of time. r is the radius of the robot. l is the
axes length. Model of a non-holonomic differential drive robot is given by:(

v
ω

)
=

(
cosθr sinθr
− 1

sinθr
1

cosθr

)(
ẋ
ẏ

)
(5.1)

Here, (x,y) are the co-ordinates of the reference point P of the robot. This is updated for
every time instant by the controller as qi. v and ω are the linear and angular velocity of the
robot respectively and θr is the orientation of the robot. Since, the radius of robot is r, a circle
with this radius circumscribes the robot, a circle of radius l + r centered at P, will contain all
points of the robot. This point p and a line from P towards the direction of orientation is shown
in the simulation.

5.2 Software Implementation
The simulation is performed in MATLAB. The code is written in the MATLAB. When com-
pared to the results simulated by the author, we have taken a generic approach of a random
distribution of the robots instead of uniform positioning of the robots as seen in Fig.5 of the
paper [2]. However, one important detail to be considered is the robot formation should be such
that s1 6= 0, s2 6= 0 and s1 6= s2. In case of the two parameters being equal, the control law does
not hold good as the states are not defined as mentioned in section 2.6.

The control law implemented in this paper considers the collision avoidance mechanism.
In the software, we implement this by acquiring the position and velocity with respect to World
Frame W for each robot and using this to solve the convex quadratic problem to get the optimum
velocity solution v̂i in the local frame B. The software package lsqlin in MATLAB is used to
solve the quadratic optimization problem. The control velocity is determined at each instant of
time and it is used to update the position of the robot every time interval based on Euler method
of simulation.

The velocity is saturated to a maximum value to ensure that each robot is not subjected
to a high velocity. This is based on the hardware considerations for the robot and for better
convergence. The velocity determined by the minimum energy control law is considered to

35



have a maximum of 0.05ms−1. Though this has not been explicitly mentioned by the author it
can be confirmed from the graphs of the velocity plot in the report. The velocity of the robots
determined by the convex problem is constrained to have a max of 0.1ms−1 as indicated by the
author in [2].

The robot is modelled to have different radius r, and different safety region εs in the simu-
lation. The collision avoidance of the robot swarm is taken into effect such that the robots are
separated by the safe separation distance in each instances of time.

5.3 Results
Simulation is done for various configuration with different number of robots and desired ab-
stract states of the formation as shown in the paper [2]. We simulate these results as imple-
mented by the author in the following section. All the distances are in meters(m), angles are in
(rad).

1. Case 1: Refer Figure 5.2. N = 5, Centroid, µ = [3 3], θ = 0.9, s1 = 0.25, s2 = 0.15.

The results below show that the robots converge to the desired state while avoiding col-
lision. This can be observed from the plot of the magnitude of difference in position
between each robot. Also, the plot of velocity depicts times at which the actual velocity
is different from that found using the control law. The final configuration indicates the
robot position with the abstract state variables of the robot being equal to the desired
state. This can be observed from the centroid ellipse of the actual robot configuration
and the desired state.

2. Case 2: Refer Figure 5.3. N = 10, Centroid, µ = [3 3], θ= 0.9, s1 = 0.6, s2 = 0.3.
The results follow a similar behavior as case 1. The robots converge to the desired state
while satisfying the collision avoidance constraint. However, note that the inter robot
communications increase a lot as they approach the desired state as expected.

3. Case 3: Refer Figure 5.4. N = 20, Centroid = [3 3], θ = 0.9, s1 = 0.3, s2 = 0.15. In case
of larger number of robots, it is observed that the system converges to the desired final
state while not satisfying the collision avoidance criterion. We tried for the parameters
as specified by the author. This condition failed. Thus, we tried to increase the safety
distance, the results were slightly better, however, the collision free movement could
not be obtained. Thus, we could infer that the dynamics of the non-holonomic robot
implemented by us must be more accurate to avoid collision.

4. Case 4: Refer Figure 5.5. N= 10, Centroid = [3 3], θ = 0.9, s1 = 0.3, s2 = 0.15. In this
case, it is observed that the system does not converge to the desired state and there is
an error in the final position’s formation. While there is an error in the system, it is still
observed that the collision avoidance is satisfied in the behavior. The final configuration
plot shows that the desired ellipse is not collinear with the centroid of the final position
of swarm which shows the error from the final desired state.
The inference from the above case is that the final ensemble cannot achieve a desired
position that requires contraction of the system due to the physical system description.
This is a limitation to this methodology. However, the system behavior is safe as collision
is avoided.
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5. Case 5: Refer Figure 5.6. N = 7, Centroid [2 1], θ = 0.5, s1 = 0.5, s2 = 0.25 In this case the
system converges to the desired state avoiding collisions and converging monotonically.

6. Case 6: Refer Figure 5.7. N = 7, Centroid [0.5 0], θ = 0, s1 = 0.4, s2 = 0.2 The system
converges to the desired state as expected but with a slight error in the final formation.
This is due to the the constaint on the physical description of the system for which these
sets of robots cannot achieve 0 error state.

(a) Initial state of the ensemble (b) Final state of the ensemble

(c) Velocity plot (d) Convergence Plot error x̃

(e) Robot position Convergence Plot

Figure 5.2: Results Case 1
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(a) Initial state of the ensemble (b) Final state of the ensemble

(c) Velocity plot (d) Convergence Plot error x̃

(e) Robot position Convergence Plot

Figure 5.3: Results Case 2
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(a) Initial state of the ensemble (b) Final state of the ensemble

(c) Velocity plot (d) Convergence Plot error x̃

(e) Robot position Convergence Plot

Figure 5.4: Results Case 3
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(a) Initial state of the ensemble (b) Final state of the ensemble

(c) Velocity plot (d) Convergence Plot error x̃

(e) Robot position Convergence Plot

Figure 5.5: Results Case 4
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(a) Initial state of the ensemble (b) Final state of the ensemble

(c) Velocity plot (d) Convergence Plot error x̃

(e) Robot position Convergence Plot

Figure 5.6: Results Case 5
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(a) Initial state of the ensemble (b) Final state of the ensemble

(c) Velocity plot (d) Convergence Plot error x̃

(e) Robot position Convergence Plot

Figure 5.7: Results Case 6
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Chapter 6

CONCLUSION

The report presents an approach to defining the shape and formation of an ensemble of robots
that is independent of the ordering and number of robots. The algorithm detailed in this report
considers the physical structure of the robot, while ensuring collision avoidance between the
members of the team. The results have been shown by simulation of the algorithm in MAT-
LAB software environment for differential drive robots and this shows the effectiveness of the
algorithm for non-holonomic robots.
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APPENDICES

Appendix A
MATLAB Code for Simulation of Swarm Robots with Non-Holonomic Constraints

1 f u n c t i o n robotSwarmFormat ion ( )
2 % C o n s t a n t s
3 g l o b a l N dT KU COEFF KS1 COEFF KS2 COEFF KT COEFF
4
5 N = 5 ; % number o f b o t s
6 dT = . 0 1 ; % t i m e s t e p l e n g t h ( p o s i t i o n i s u p d a t e d each s t e p

)
7
8 % C o n t r o l g a i n s − Thi s i s t a k e n from t h e 2004 p a p e r . These a r e

t h e g a i n s
9 % f o r t h e i n d i v i d u a l a b s t r a c t s t a t e v a r i a b l e used i n t h e

s i m u l a t i o n o f t h e
10 % p a p e r
11 KU COEFF = [2 0 ; 0 2 ] ;
12 KS2 COEFF = 2 ;
13 KT COEFF = 2 ;
14
15 % Coun te r t o a c c u m u l a t e t h e v a l u e s o f t h e d a t a a f t e r each t ime

i n t e r v a l
16 PLOT COUNTER = 1 ;
17
18
19 %%%%%%%%%%%%%
20 % Main loop %
21 %%%%%%%%%%%%%
22 o u t p a t h = pwd ;
23 % o u t p u t V i d e o = V i d e o W r i t e r ( f u l l f i l e ( o u t p a t h , ’ S i m u l a t i o n V i d e o .

mp4 ’ ) , ’MPEG−4 ’) ;
24 % open ( o u t p u t V i d e o ) ;
25
26 % P l a c e t h e r o b o t swarm i n t h e s p a c e
27 b o t s = d i s t r i b u t e B o t s (N) ;
28
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29 % Time and p o s P l o t t o a c c u m u l a t e v a l u e s
30 Time ( 1 ) = 0 ;
31 KS1 COEFF = 2 ;
32 p o s P l o t (N, 1 ) = s t r u c t ;
33
34 f o r i =1 :N
35 p o s P l o t ( i ) . qx ( 1 ) = b o t s ( i ) . q ( 1 ) ;
36 p o s P l o t ( i ) . qy ( 1 ) = b o t s ( i ) . q ( 2 ) ;
37 p o s P l o t ( i ) . uStarX ( 1 ) = 0 ;
38 p o s P l o t ( i ) . uStarY ( 1 ) = 0 ;
39 p o s P l o t ( i ) . uCapX ( 1 ) = b o t s ( i ) . u ( 1 ) ;
40 p o s P l o t ( i ) . uCapY ( 1 ) = b o t s ( i ) . u ( 2 ) ;
41 end
42
43 PLOT COUNTER = PLOT COUNTER + 1 ;
44
45 %I n i t i a l i z e t h e a b s t r a c t s p a c e
46 u C e n t r o i d = [0 0 ] . ’ ;
47 t h e t a = 0 ;
48 s1 = 0 ;
49 s2 = 0 ;
50
51 %I n i t i a l i z e t h e m a t r i c e s t o c a l c u l a t e shape v a r i a b l e s
52 E1 = [0 1 ; 1 0 ] ;
53 E2 = [1 0 ; 0 −1];
54 E3 = [0 −1; 1 0 ] ;
55
56
57 %I n i t i a l i z i n g t h e d e s i r e d p o s i t i o n v a r i a b l e s
58 uCent ro idD = [3 ; 3 ] ;
59 s1D = 0 . 2 5 ;
60 s2D = 0 . 1 5 ;
61 t h e t a D = 0 . 9 ;
62
63 %D i s t a n c e between b o t s − Taken from s i m u l a t i o n o f t h e c u r r e n t

r e s e a r c h
64 %p a p e r
65 b o t R a d i u s = 0 . 1 5 ;
66 bo tAx leLeng th = 0 . 1 ;
67 s a f e D i s t = 0 . 1 ;
68 s e p D i s t = 2∗ ( b o t R a d i u s + bo tAx leLeng th ) + s a f e D i s t ;
69
70 %I n i t i a l i z e t h e c o n f i g u r a t i o n
71 [ u C e n t r o i d , t h e t a , s1 , s2 ] = a b s t r a c t S p a c e ( b o t s ) ;
72
73 f i g u r e ;
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74 drawEl ip seBounda ry ( bo t s , u C e n t r o i d , t h e t a , s1 , s2 , uCentroidD ,
the taD , s1D , s2D , bo tRad ius , bo tAx leLeng th ) ;

75 %C r e a t e a f i g u r e h a n d l e which we l i k e t o c a p t u r e as a movie
76 f i g u r e ;
77 % F = g e t f r a m e ( g c f ) ;
78
79 %I n i t i a l p o s i t i o n o f t h e r o b o t s wi th t h e e l i p s e
80 drawEl ip seBounda ry ( bo t s , u C e n t r o i d , t h e t a , s1 , s2 , uCentroidD ,

the taD , s1D , s2D , bo tRad ius , bo tAx leLeng th ) ;
81 % w r i t e V i d e o ( ou tpu tVideo , g e t f r a m e ( g c f ) ) ;
82
83 %I n i t i a l i z e p l o t v a r i a b l e s
84 u P l o t x ( 1 ) = uCent ro idD ( 1 ) − u C e n t r o i d ( 1 ) ;
85 u P l o t y ( 1 ) = uCent ro idD ( 1 ) − u C e n t r o i d ( 2 ) ;
86 t h e t a P l o t ( 1 ) = t h e t a D − t h e t a ;
87 s 1 P l o t ( 1 ) = s1D − s1 ;
88 s 2 P l o t ( 1 ) = s2D − s2 ;
89
90 % This v a r i a b l e r e p r e s e n t s t h e c o m p l e t e s t a t e o f t h e sys tem
91 x P l o t ( 1 ) = norm ( [ u P l o t x ( 1 ) ; u P l o t y ( 1 ) ; t h e t a P l o t ( 1 ) ; s 1 P l o t

( 1 ) ; s 2 P l o t ( 1 ) ] , 2 ) ;
92
93 % s t e p c o u n t e r f o r e v e r y i n t e r v a l s o f t ime
94 s t e p C o u n t e r = 0 ;
95 keepLooping = t r u e ;
96
97 %Values t o c o n t a i n t h e f i n a l v e l o c i t y c a l c u l a t e d from t h e

convex
98 %o p t i m i z a t i o n problem
99 uxMax = [ 0 . 1 ; 0 . 1 ] ;

100 kVel = [0 ; 0 ] ;
101 nVel = 0 ;
102
103 %Values t o c o n t a i n t h e min e ne r gy c o n t r o l law v e l o c i t y . Th i s

i s i n
104 %a c c o r d a n c e wi th t h e p a p e r where t h e min e ne r gy c o n t r o l law

v e l o c i t y i s
105 %ha v i ng magni tude maximum of 0 . 0 5 .
106 uxMaxCtrlLaw = 0 . 0 5 ;
107
108 c o n d i t i o n F a i l u r e = 0 ;
109
110 w h i l e ( t r u e == keepLooping && ( 3 5 0∗1 / dT >= s t e p C o u n t e r ) )
111
112 % C a l c u l a t i n g t h e a b s t r a c t s t a t e v a r i a b l e s
113 [ u C e n t r o i d , t h e t a , s1 , s2 ] = a b s t r a c t S p a c e ( b o t s ) ;
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114
115 R = [ cos ( t h e t a ) −s i n ( t h e t a ) ; s i n ( t h e t a ) cos ( t h e t a ) ] ;
116 H1 = eye ( 2 ) + Rˆ2∗E2 ;
117 H2 = eye ( 2 ) − Rˆ2∗E2 ;
118 H3 = Rˆ2∗E1 ;
119 g = [ [ R u C e n t r o i d ] ; 0 0 1 ] ;
120
121 %Check i f t h e d e s i r e d f o r m a t i o n has been r e a c h e d
122 i f ( i s e q u a l ( round ( ( uCen t ro idD ( 1 ) − u C e n t r o i d ( 1 ) ) , 3 ) , 0 ) &&

i s e q u a l ( round ( ( uCent ro idD ( 2 ) − u C e n t r o i d ( 2 ) ) , 3 ) , 0 ) &&
i s e q u a l ( round ( ( s1D−s1 ) , 3 ) , 0 ) && i s e q u a l ( round ( ( s2D−s2 )
, 3 ) , 0 ) && i s e q u a l ( round ( ( the taD− t h e t a ) , 4 ) , 0 ) )

123 b r e a k ;
124 end
125
126 %C a l c u l a t e t h e e r r o r g a i n s f o r each of t h e o u t p u t
127 d C e n t r o i d = KU COEFF∗ ( uCent ro idD − u C e n t r o i d ) ;
128 dThe ta = KT COEFF∗ ( t h e t a D − t h e t a ) ;
129 dS1 = KS1 COEFF∗ ( s1D − s1 ) ;
130 dS2 = KS2 COEFF∗ ( s2D − s2 ) ;
131
132 f o r r o b o t I n d 1 =1:N
133 p o s i t i o n = b o t s ( r o b o t I n d 1 ) . q . ’ ; % C u r r e n t p o s i t i o n o f

t h e r o b o t
134 %C a l c u l a t i o n o f v e l o c i t y u s i n g min e ne r gy c o n t r o l law
135 v e l o c i t y = d C e n t r o i d + ( ( s1−s2 ) ∗H3∗ ( p o s i t i o n −

u C e n t r o i d ) ∗ dThe ta / ( s1+s2 ) ) . . . .
136 + ( H1∗ ( p o s i t i o n − u C e n t r o i d ) ∗dS1 / 4∗ s1 ) + ( H2∗ (

p o s i t i o n − u C e n t r o i d ) ∗dS2 / 4∗ s2 ) ;
137 % u i ∗
138
139 %S c a l i n g t h e v a l u e s o f t h e min e ne r gy c t r l v e l o c i t y t o

0 . 0 5 ms−1
140 nVelCtr lLaw = max ( 1 , norm ( v e l o c i t y , 2 ) / uxMaxCtrlLaw ) ;
141
142 v e l o c i t y = v e l o c i t y / nVelCt r lLaw ;
143
144 % C o n v e r t i n g u t o v u s i n g R and a l s o p o s i t i o n w. r . t

moving f rame
145 m o v P o s i t i o n = R . ’ ∗ ( p o s i t i o n − u C e n t r o i d ) ; %p i
146 movVeloc i ty = R. ’∗ v e l o c i t y ; %v i ∗
147
148 %I n e q u a l i t y c o n s t r a i n t f o r a s y m p t o t i c c o n v e r g e n c e
149 % s t a t e T i l d e i s t h e e r r o r o f t h e s t a t e
150 s t a t e T i l d e = [ uCent ro idD − u C e n t r o i d ; the taD− t h e t a ; s1D−

s1 ; s2D−s2 ] ;
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151
152 % Gamma i s t h e t r a n s f o r m a t i o n m a t r i x from moving f rame

t o a b s t r a c t
153 % s p a c e
154 Gamma = [ g z e r o s ( 3 , 2 ) ; z e r o s ( 2 , 3 ) eye ( 2 ) ] ;
155
156 % 5 by 1 m a t r i x used i n t h e monotonic c o n v e r g e n c e

c r i t e r i a n
157 v a l = [ eye ( 2 ) ; ( 1 / s1−s2 ) ∗m o v P o s i t i o n . ’∗E1 ; m o v P o s i t i o n

. ’ ∗ ( eye ( 2 ) +E2 ) ; m o v P o s i t i o n . ’ ∗ ( eye ( 2 )−E2 ) ] ;
158
159 %Gain Ma t r i x − 5∗5 m a t r i x
160 GainMat = [KU COEFF ( 1 , : ) 0 0 0 ; KU COEFF ( 2 , : ) 0 0 0 ; 0

0 KT COEFF 0 0 ; 0 0 0 KS1 COEFF 0 ; 0 0 0 0
KS2 COEFF ] ;

161
162 A c o n d i t i o n 1 = s t a t e T i l d e . ’∗ GainMat∗Gamma∗ v a l ;
163
164 %I n e q u a l i t y c o n s t r a i n t t o s a t u r a t e t h e maximum

v e l o c i t y o f t h e r o b o t
165 % c a l c u l a t e d u s i n g convex o p t i m i z a t i o n t o max of 0 . 1 ms

−1
166 % u = Rv
167 A c o n d i t i o n 2 = [1 0] ∗ R ;
168 A c o n d i t i o n 3 = [0 1] ∗ R ;
169
170 AMatCondi t ion =[−A c o n d i t i o n 1 ; A c o n d i t i o n 2 ;

A c o n d i t i o n 3 ] ;
171 BMatCondi t ion = [ 0 ; 0 . 1 ; 0 . 1 ] ;
172
173 %Check f o r c o n d i t i o n s when t h e r o b o t s a r e w i t h i n

c o l l i s i o n d i s t a n c e .
174 %This i s when t h e c c o l l i s i o n a v o i d a n c e c o n s t r a i n e d i s

a p p l i e d f o r t h e
175 %r o b o t s
176 f o r r o b o t I n d 2 =1:N
177 % c a l c u l a t e t h e p o s i t i o n o f each r o b o t and compare

a g a i n s t
178 % c u r r e n t
179 i f ( r o b o t I n d 2 ˜= r o b o t I n d 1 )
180 b o t 1 P o s i t i o n = R . ’ ∗ ( b o t s ( r o b o t I n d 1 ) . qN . ’ −

u C e n t r o i d ) ; %p1
181 b o t 2 P o s i t i o n = R . ’ ∗ ( b o t s ( r o b o t I n d 2 ) . qN . ’ −

u C e n t r o i d ) ; %p2 − Old
182
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183 b o t 2 V e l o c i t y = R . ’ ∗ ( b o t s ( r o b o t I n d 2 ) . uN . ’ ) ;%v2
− New

184 %t h e c a l c u l a t e d d e l t a v a l u e
185 d e l t a = norm ( b o t 2 P o s i t i o n − b o t 1 P o s i t i o n , 2 ) ;
186
187 i f ( d e l t a <= s e p D i s t )
188 % C o n d i t i o n f o r t h e c o l l i s i o n a v o i d a n c e
189 A c o n d i t i o n 4 = ( b o t 1 P o s i t i o n − b o t 2 P o s i t i o n

) . ’ ;
190 B c o n d i t i o n 4 = ( ( b o t 1 P o s i t i o n −

b o t 2 P o s i t i o n ) . ’∗ b o t 2 V e l o c i t y ) ;
191 AMatCondi t ion = [ AMatCondi t ion ; −

A c o n d i t i o n 4 ] ;
192 BMatCondi t ion = [ BMatCondi t ion ; −

B c o n d i t i o n 4 ] ;
193 end
194 end
195 end
196
197 % S o l v i n g f o r o p t i m a l v e l o c i t y based on p r e v i o u s

c o n d i t i o n
198 o p t s 1 = o p t i m s e t ( ’ d i s p l a y ’ , ’ o f f ’ ) ;
199 v e l o c i t y C a p = l s q l i n ( s q r t ( 2 ) ∗ eye ( 2 ) , s q r t ( 2 ) ∗

movVeloci ty , AMatCondit ion , BMatCondi t ion
, [ ] , [ ] , [ ] , [ ] , [ ] , o p t s 1 ) ; %v i c a p

200
201 % There a r e i n s t a n c e s i n which t h e l s q l i n f u n c t i o n

f a i l s . Th i s i s a
202 % check f o r t h e f a i l u r e t o debug t h e sys tem
203 i f ( round ( AMatCondi t ion ∗ v e l o c i t y C a p , 3 ) > round (

BMatCondi t ion , 3 ) )
204 AMatCondi t ion ∗ v e l o c i t y C a p − BMatCondi t ion
205 c o n d i t i o n F a i l u r e = c o n d i t i o n F a i l u r e + 1 ;
206 end
207
208 % v e l o c i t y wi th r e s p e c t t o t h e wor ld f rame
209 velWorldFrame = R∗ v e l o c i t y C a p ; %u i c a p
210
211 %As p e r t h e p a p e r we w i l l c o n t a i n t h e v e l o c i t y a t max

cap v e l o c i t y
212 %f o r t h e r o b o t
213 kVel ( 1 ) = max ( 1 , abs ( velWorldFrame ( 1 ) ) / uxMax ( 1 ) ) ;
214 kVel ( 2 ) = max ( 1 , abs ( velWorldFrame ( 2 ) ) / uxMax ( 2 ) ) ;
215
216 nVel = max ( kVel ( 1 ) , kVel ( 2 ) ) ;
217
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218 velWorldFrame = velWorldFrame / nVel ;
219
220 % Update t h e p o s i t i o n o f t h e r o b o t based on E u l e r

method f o r s i m u l a t i o n
221 % Mode l l i ng t h e p o s i t i o n based on t h e d i f f e r e n t i a l

d r i v e r o b o t
222 % model
223 u p d a t e D i f f e r e n t i a l D r i v e P o s ( velWorldFrame ,

bo tAxleLeng th , r o b o t I n d 1 ) ;
224
225 b o t s ( r o b o t I n d 1 ) . u S t a r = v e l o c i t y . ’ ; %u i ∗
226 end
227
228 %Update each of t h e r o b o t p o s i t i o n
229 f o r r o b o t I n d 1 =1:N
230
231 %Update t h e p o s i t i o n and v e l o c i t y v a r i a b l e s o f t h e

r o b o t s
232 b o t s ( r o b o t I n d 1 ) . q = b o t s ( r o b o t I n d 1 ) . qN ;
233 b o t s ( r o b o t I n d 1 ) . u = b o t s ( r o b o t I n d 1 ) . uN ;
234 b o t s ( r o b o t I n d 1 ) . t r = b o t s ( r o b o t I n d 1 ) . t rN ;
235
236 % Accumulate t h e p l o t v a r i a b l e s
237 % P o s i t i o n o f r o b o t s
238 p o s P l o t ( r o b o t I n d 1 ) . qx (PLOT COUNTER) = b o t s ( r o b o t I n d 1 ) .

q ( 1 ) ;
239 p o s P l o t ( r o b o t I n d 1 ) . qy (PLOT COUNTER) = b o t s ( r o b o t I n d 1 ) .

q ( 2 ) ;
240 % Minimum e ne rg y c o n t r o l v e l o c i t y
241 p o s P l o t ( r o b o t I n d 1 ) . uStarX (PLOT COUNTER) = b o t s (

r o b o t I n d 1 ) . u S t a r ( 1 ) ;
242 p o s P l o t ( r o b o t I n d 1 ) . uStarY (PLOT COUNTER) = b o t s (

r o b o t I n d 1 ) . u S t a r ( 2 ) ;
243 % C o n t r o l v e l o c i t y i n p u t based on convex o p t i m i z a t i o n
244 p o s P l o t ( r o b o t I n d 1 ) . uCapX (PLOT COUNTER) = b o t s (

r o b o t I n d 1 ) . u ( 1 ) ;
245 p o s P l o t ( r o b o t I n d 1 ) . uCapY (PLOT COUNTER) = b o t s (

r o b o t I n d 1 ) . u ( 2 ) ;
246
247 end
248
249 s t e p C o u n t e r = s t e p C o u n t e r +1;
250
251 %Accumulate t h e d a t a v a l u e s f o r t h e p l o t
252 Time (PLOT COUNTER) = ( Time ( 1 ) + dT∗ s t e p C o u n t e r ) ;
253 u P l o t x (PLOT COUNTER) = ( uCent ro idD ( 1 ) − u C e n t r o i d ( 1 ) ) ;
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254 u P l o t y (PLOT COUNTER) = ( uCent ro idD ( 2 ) − u C e n t r o i d ( 2 ) ) ;
255 t h e t a P l o t (PLOT COUNTER) = ( t h e t a D − t h e t a ) ;
256 s 1 P l o t (PLOT COUNTER) = ( s1D−s1 ) ;
257 s 2 P l o t (PLOT COUNTER) = ( s2D − s2 ) ;
258 x P l o t (PLOT COUNTER) = norm ( [ u P l o t x (PLOT COUNTER) ; u P l o t y (

PLOT COUNTER) ; t h e t a P l o t (PLOT COUNTER) ; s 1 P l o t (
PLOT COUNTER) ; s 2 P l o t (PLOT COUNTER) ] , 2 ) ;

259
260 PLOT COUNTER = PLOT COUNTER+1;
261
262 i f (0 == i s n a n ( s1 ) && 0 == i s n a n ( s2 ) )
263 s1 , s2 , u C e n t r o i d , t h e t a
264 end
265
266 i f ( mod ( s t e p C o u n t e r , 2 0 ) == 0)
267 drawEl ip seBounda ry ( bo t s , u C e n t r o i d , t h e t a , s1 , s2 ,

uCentro idD , the taD , s1D , s2D , bo tRad ius , bo tAx leLeng th ) ;
268 % w r i t e V i d e o ( ou tpu tVideo , g e t f r a m e ( g c f ) ) ;
269 end
270
271 end
272
273 %G e n e r a t e t h e d a t a f o r d i f f e r e n c e i n b o t p o s i t i o n
274 l =1 ;
275 f o r j =1 :N
276 f o r k =( j +1) :N
277 f o r p l o t C o u n t =1:PLOT COUNTER−1
278 tempMatVal = [ p o s P l o t ( j ) . qx ( p l o t C o u n t ) − p o s P l o t ( k

) . qx ( p l o t C o u n t ) ; p o s P l o t ( j ) . qy ( p l o t C o u n t ) −
p o s P l o t ( k ) . qy ( p l o t C o u n t ) ] ;

279 p o s D i f f P l o t ( l ) . q ( p l o t C o u n t ) = norm ( tempMatVal , 2 ) ;
280
281 end
282 l = l +1 ;
283 end
284 end
285
286 %G e n e r a t e t h e d a t a f o r t h e v e l o c i t y p l o t
287 f o r j =1 :N
288 f o r p l o t C o u n t =1:PLOT COUNTER−1
289 v e l S t a r P l o t ( j ) . u ( p l o t C o u n t ) = norm ( [ p o s P l o t ( j ) . uStarX (

p l o t C o u n t ) p o s P l o t ( j ) . uStarY ( p l o t C o u n t ) ] , 2 ) ;
290 v e l C a p P l o t ( j ) . u ( p l o t C o u n t ) = norm ( [ p o s P l o t ( j ) . uCapX (

p l o t C o u n t ) p o s P l o t ( j ) . uCapY ( p l o t C o u n t ) ] , 2 ) ;
291 end
292 end
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293
294 % Draw t h e f i n a l e l i p s e p o s i t i o n
295 drawEl ip seBounda ry ( bo t s , u C e n t r o i d , t h e t a , s1 , s2 , uCentroidD ,

the taD , s1D , s2D , bo tRad ius , bo tAx leLeng th ) ;
296 % w r i t e V i d e o ( ou tpu tVideo , g e t f r a m e ( g c f ) ) ;
297
298 % c l o s e ( ouVtputVideo ) ;
299
300 %We s t a r t P l o t t i n g our p a r a m e t e r s h e r e
301 % P l o t o f t h e e r r o r i n t h e s t a t e v a r i a b l e s
302 f i g u r e ;
303
304 p l o t 1 = p l o t ( Time , x P l o t , Time , abs ( u P l o t x ) , ’−− ’ , Time , abs (

u P l o t y ) , ’−− ’ , Time , abs ( t h e t a P l o t ) , ’−− ’ , Time , abs ( s 1 P l o t ) , ’
−− ’ , Time , abs ( s 2 P l o t ) , ’−− ’ , ’ l i n e w i d t h ’ , 0 . 7 ) ;

305 p l o t 1 ( 1 ) . LineWidth = 1 ;
306 p l o t 1 ( 1 ) . Co lo r = ’ b l a c k ’ ;
307 x l a b e l ( ’ Time ( s ) ’ ) ;
308 y l a b e l ( ’ Magni tude ’ ) ;
309 l e g e n d ( ’ | | x | | ’ , ’ | | x 1 | | ’ , ’ | | x 2 | | ’ , ’ | | x 3 | | ’ , ’ | | x 4 | | ’ , ’ | | x 5

| | ’ ) ;
310 t i t l e ( ’ c o n v e r g e n c e P l o t ’ ) ;
311 ho ld on ;
312
313
314 f i g u r e ;
315 p l o t ( Time , 2 ∗ ( b o t R a d i u s + bo tAx leLeng th ) ∗ ones ( s i z e ( Time ) ) , ’−− ’ ,

’ Co lo r ’ , ’ b l a c k ’ ) ;
316 ho ld on ;
317 f o r i =1 : l−1
318 p l o t ( Time , p o s D i f f P l o t ( i ) . q ) ;
319 ho ld on ;
320 end
321 x l a b e l ( ’ Time ( s ) ’ ) ;
322 y l a b e l ( ’ | | q i−q j | | ( m) ’ ) ;
323 t i t l e ( ’ R o b o t P o s i t i o n C o m p a r i s o n ’ ) ;
324
325 ho ld on ;
326
327 f i g u r e ;
328 p l o t ( Time , v e l S t a r P l o t ( 1 ) . u , ’−− ’ , Time , v e l C a p P l o t ( 1 ) . u , ’

l i n e w i d t h ’ , 1 ) ;
329 x l a b e l ( ’ Time ( s ) ’ ) ;
330 y l a b e l ( ’ Magni tude (m/ s ) ’ ) ;
331 t i t l e ( ’ V e l o c i t y P l o t ’ ) ;
332 l e g e n d ( ’ | | u i ˆ { ∗ } | | ’ , ’ | | u i ˆ { \ ˆ } | | ’ ) ;
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333 ho ld on ;
334
335 f i g u r e ;
336 drawEl ip seBounda ry ( bo t s , u C e n t r o i d , t h e t a , s1 , s2 , uCentroidD ,

the taD , s1D , s2D , bo tRad ius , bo tAx leLeng th ) ;
337
338 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

339 % Bot i n i t i a l i z a t i o n
%

340 % D e s c r i p t i o n − Thi s f u n c t i o n d i s t r i b u t e s t h e r o b o t s i n
E u c l i d e a n s p a c e as%

341 % a normal d i s t r i b u t i o n . The s e p a r a t i o n between each r o b o t
s h o u l d be %

342 % g r e a t e r t h a n t h e i n i t i a l c o n f i g u r a t i o n
%

343 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

344 f u n c t i o n b o t s = d i s t r i b u t e B o t s (N)
345
346 %S t r u c t u r e v a r i a b l e s :
347 %q − h o l d s t h e p o s i t i o n w. r . t t h e wor ld f rame
348 %u − V e l o c i t y w. r . t t h e wor ld f rame
349 %qN − Holds t h e new p o s i t i o n o f t h e r o b o t s t h a t has t o

be u p d a t e d
350 b o t s (N, 1 ) = s t r u c t ( ’ q ’ , [ 0 ; 0 ] , ’ u ’ , [ 0 ; 0 ] . ’ , ’qN ’ , [ 0 ;

0 ] , ’uN ’ , [ 0 ; 0 ] , ’ u S t a r ’ , [ 0 ; 0 ] , ’ t r ’ , 0 , ’ t rN ’ , 0 ) ;
351
352
353 % Choosing Random d i s t r i b u t i o n o f t h e r o b o t s where t h e

r o b o t s a r e
354 % s e p a r a t e d a t a d i s t a n c e g r e a t e r t h a t n t h e s a f e

s e p a r a t i o n d i s t a n c e
355 % between each of them . We choose
356 % an a r b i t r a r y v a l u e o f t h e mean and t h e s t a n d a r d

d e v i a t i o n
357
358 randLoop = t r u e ;
359 w h i l e ( randLoop )
360 c o u n t e r = 0 ;
361 % S t a n d a r d d e v i a t i o n i s e q u a l t o r o b o t c o u n t / 4
362 A = normrnd ( 5 , max ( 1 ,N/ 4 ) , [ 2 ,N] ) ;
363
364 f o r r o b o t I n d 1 =1:N
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365 f o r r o b o t I n d 2 =1:N
366 i f ( r o b o t I n d 1 ˜= r o b o t I n d 2 )
367 i f ( norm ( (A ( : , r o b o t I n d 1 ) − A ( : ,

r o b o t I n d 2 ) ) , 2 ) < 0 . 6 )
368 c o u n t e r = c o u n t e r +1;
369 end
370 end
371 end
372 end
373
374 i f ( c o u n t e r == 0)
375 %P r i n t t h e p o s i t i o n o f t h e r o b o t s
376 A
377 randLoop = f a l s e ;
378 end
379 end
380
381 f o r r o b o t I n d =1:N
382 % p l a c e agen t , I n i t i a l i z i n g a l l s t a t e s o f t h e

r o b o t s
383 b o t s ( r o b o t I n d ) . q = A( 1 : 2 , r o b o t I n d ) . ’ ;
384 b o t s ( r o b o t I n d ) . qN = A( 1 : 2 , r o b o t I n d ) . ’ ;
385 b o t s ( r o b o t I n d ) . u = [0 0 ] ;
386 b o t s ( r o b o t I n d ) . uN = [0 0 ] ;
387 b o t s ( r o b o t I n d ) . u S t a r = [0 0 ] ;
388 b o t s ( r o b o t I n d ) . t r = 0 ;
389 b o t s ( r o b o t I n d ) . t rN = 0 ;
390 end
391 end
392
393 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

394 % Name − A b s t r a c t Space
%

395 % D e s c r i p t i o n − Computes t h e a b s t r a c t s t a t e v a r i a b l e s o f t h e
f o r m a t i o n %

396 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

397 f u n c t i o n [ a C e n t r o i d , aTheta , aS1 , aS2 ] = a b s t r a c t S p a c e ( b o t s )
398 E1 = [0 1 ; 1 0 ] ;
399 E2 = [1 0 ; 0 −1];
400 E3 = [0 −1; 1 0 ] ;
401
402 tThe taY = 0 ;
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403 tThe taX = 0 ;
404 tS1 = 0 ;
405 tS2 = 0 ;
406 t e m p C e n t r o i d = 0 ;
407
408 %C a l c u l a t e C e n t r o i d
409 f o r r o b o t I n d =1:N
410 p o s i t i o n = b o t s ( r o b o t I n d ) . q . ’ ;
411 t e m p C e n t r o i d = t e m p C e n t r o i d + p o s i t i o n ;
412 end
413 a C e n t r o i d = 1 /N ∗ t e m p C e n t r o i d ;
414
415 %C a l c u l a t e O r i e n t a t i o n
416 f o r r o b o t I n d = 1 :N
417 p o s i t i o n = b o t s ( r o b o t I n d ) . q . ’ ;
418 tThe taY = tThe taY + ( p o s i t i o n − a C e n t r o i d ) . ’∗E1 ∗ (

p o s i t i o n − a C e n t r o i d ) ;
419 tThe taX = tThe taX + ( p o s i t i o n − a C e n t r o i d ) . ’∗E2 ∗ (

p o s i t i o n − a C e n t r o i d ) ;
420 end
421 a Th e t a = a t a n 2 ( tThe taY , tThe taX ) / 2 ;
422 R = [ cos ( t h e t a ) −s i n ( t h e t a ) ; s i n ( t h e t a ) cos ( t h e t a )

] ;
423 H1 = eye ( 2 ) + Rˆ2∗E2 ;
424 H2 = eye ( 2 ) − Rˆ2∗E2 ;
425 H3 = Rˆ2∗E1 ;
426
427 f o r r o b o t I n d =1:N
428 p o s i t i o n = b o t s ( r o b o t I n d ) . q . ’ ;
429 tS1 = tS1 + ( ( p o s i t i o n − a C e n t r o i d ) . ’∗H1∗ ( p o s i t i o n

− a C e n t r o i d ) ) ;
430 tS2 = tS2 + ( ( p o s i t i o n − a C e n t r o i d ) . ’∗H2∗ ( p o s i t i o n

− a C e n t r o i d ) ) ;
431 end
432
433 aS1 = tS1 / ( 2∗ (N−1) ) ;
434 aS2 = tS2 / ( 2∗ (N−1) ) ;
435
436 end
437
438 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

439 % Name − drawEl ip seBounda ry
%
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440 % D e s c r i p t i o n − Draw e l i p s e boundary around t h e r o b o t
f o r m a t i o n and t h e %

441 % f i n a l d e s i r e d p o s i t o n
%

442 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

443 f u n c t i o n d rawEl ip seBounda ry ( aBots , a C e n t r o i d , aTheta , aS1
, aS2 , aCent ro idD , aThetaD , aS1D , aS2D , bo tRad ius ,
bo tAx leLeng th )

444 % P l o t t h e r o b o t p o s i t i o n s and t h e e l l i p s o i d
445 X = [ ] ;
446 t = 0 : 0 . 0 1 : 2∗ p i ;
447
448 f o r r o b o t I n d =1:N
449 X = [X [ aBot s ( r o b o t I n d ) . q ( 1 ) ; aBo t s ( r o b o t I n d ) . q ( 2 )

] ] ;
450 end
451
452 i f aS1>aS2
453 % M u l t i p l y [ acos ( t ) ; b s i n ( t ) ] by R . Taking

c o n f i d e n c e p a r a m e t e r a s 1
454 x1 = a C e n t r o i d ( 1 ) + s q r t ( 9 . 2 1 0 3∗ aS1 ) ∗ cos ( t ) ∗ cos (

a Th e t a ) − s q r t (2∗ aS2 ) ∗ s i n ( t ) ∗ s i n ( a T he t a ) ;
455 y1 = a C e n t r o i d ( 2 ) + s q r t ( 9 . 2 1 0 3∗ aS2 ) ∗ s i n ( t ) ∗ cos (

a Th e t a ) + s q r t (2∗ aS1 ) ∗ cos ( t ) ∗ s i n ( a T he t a ) ;
456 e l s e
457 % M u l t i p l y [ acos ( t ) ; b s i n ( t ) ] by R . Taking

c o n f i d e n c e p a r a m e t e r a s 1
458 x1 = a C e n t r o i d ( 1 ) + s q r t ( 9 . 2 1 0 3∗ aS2 ) ∗ cos ( t ) ∗ cos (

a Th e t a ) − s q r t (2∗ aS1 ) ∗ s i n ( t ) ∗ s i n ( a T he t a ) ;
459 y1 = a C e n t r o i d ( 2 ) + s q r t ( 9 . 2 1 0 3∗ aS1 ) ∗ s i n ( t ) ∗ cos (

a Th e t a ) + s q r t (2∗ aS2 ) ∗ cos ( t ) ∗ s i n ( a T he t a ) ;
460 end
461
462 %P l o t t h e d e s i r e d e l i p s e p o s i t i o n
463
464 i f aS1D>aS2D
465 % M u l t i p l y [ acos ( t ) ; b s i n ( t ) ] by R . Taking

c o n f i d e n c e p a r a m e t e r a s 1
466 x2 = aCen t ro idD ( 1 ) + s q r t ( 9 . 2 1 0 3∗ aS1D ) ∗ cos ( t ) ∗ cos (

aThetaD ) − s q r t (2∗ aS2D ) ∗ s i n ( t ) ∗ s i n ( aThetaD ) ;
467 y2 = aCen t ro idD ( 2 ) + s q r t ( 9 . 2 1 0 3∗ aS2D ) ∗ s i n ( t ) ∗ cos (

aThetaD ) + s q r t (2∗ aS1D ) ∗ cos ( t ) ∗ s i n ( aThetaD ) ;
468 e l s e
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469 % M u l t i p l y [ acos ( t ) ; b s i n ( t ) ] by R . Taking
c o n f i d e n c e p a r a m e t e r a s 1

470 x2 = aCen t ro idD ( 1 ) + s q r t ( 9 . 2 1 0 3∗ aS2D ) ∗ cos ( t ) ∗ cos (
aThetaD ) − s q r t (2∗ aS1D ) ∗ s i n ( t ) ∗ s i n ( aThetaD ) ;

471 y2 = aCen t ro idD ( 2 ) + s q r t ( 9 . 2 1 0 3∗ aS1D ) ∗ s i n ( t ) ∗ cos (
aThetaD ) + s q r t (2∗ aS2D ) ∗ cos ( t ) ∗ s i n ( aThetaD ) ;

472 end
473
474 % l a b e l s = { ’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 6 ’ , ’ 7 ’ , ’ 8 ’ , ’ 9 ’ , ’ 1 0 ’} ;
475 p l o t (X ( 1 , : ) ,X ( 2 , : ) , ’ o ’ ) ;
476 % t e x t (X( 1 , : ) ,X( 2 , : ) , l a b e l s , ’ V e r t i c a l A l i g n m e n t ’ , ’

bottom ’ , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ r i g h t ’ ) ;
477 t i t l e ( ’ Robot C o n f i g u r a t i o n ’ )
478 x l a b e l ( ’X−a x i s ’ )
479 y l a b e l ( ’Y−a x i s ’ )
480 ho ld on
481 p l o t ( x1 , y1 , ’ r ’ , x2 , y2 , ’ b ’ ) ;
482 f o r r o b o t I n d =1:N
483 b o t C e n t e r = aBot s ( r o b o t I n d ) . q ;
484 b o t O r i e n t a t i o n = aBot s ( r o b o t I n d ) . t r ;
485 r o tM a t = [ cos ( b o t O r i e n t a t i o n ) −s i n ( b o t O r i e n t a t i o n )

; s i n ( b o t O r i e n t a t i o n ) cos ( b o t O r i e n t a t i o n ) ] ;
486 % ro tM a t = [ cos ( b o t O r i e n t a t i o n ) s i n ( b o t O r i e n t a t i o n

) b o t R a d i u s ∗ cos ( b o t O r i e n t a t i o n ) ; −s i n ( b o t O r i e n t a t i o n ) cos (
b o t O r i e n t a t i o n ) b o t R a d i u s ∗ s i n ( b o t O r i e n t a t i o n ) ; 0 0 1 ] ;

487 l i n e E n d = b o t C e n t e r + [ ( b o t R a d i u s + bo tAx leLeng th ) ∗
cos ( b o t O r i e n t a t i o n ) ( b o t R a d i u s + bo tAx leLeng th ) ∗
s i n ( b o t O r i e n t a t i o n ) ] ;

488 % l i n e E n d = l i n e E n d ( 1 : 2 , 1 ) . ’ ;
489 % D e f i n i n g c i r c l e s a round each r o b o t
490 x = aBot s ( r o b o t I n d ) . q ( 1 ) + bo tAx leLeng th ∗ cos (

b o t O r i e n t a t i o n ) + ( b o t R a d i u s + bo tAx leLeng th ) ∗ cos (
t ) ;

491 y = aBot s ( r o b o t I n d ) . q ( 2 ) + bo tAx leLeng th ∗ s i n (
b o t O r i e n t a t i o n ) + ( b o t R a d i u s + bo tAx leLeng th ) ∗ s i n (
t ) ;

492 p l o t ( x , y , ’ g ’ ) ;
493 q u i v e r ( b o t C e n t e r ( 1 , 1 ) , b o t C e n t e r ( 1 , 2 ) , l i n e E n d ( 1 , 1 ) +

bo tAx leLeng th ∗ cos ( b o t O r i e n t a t i o n ) − b o t C e n t e r
( 1 , 1 ) , l i n e E n d ( 1 , 2 ) + bo tAx leLeng th ∗ s i n (
b o t O r i e n t a t i o n ) − b o t C e n t e r ( 1 , 2 ) , 0 , ’ Co lo r ’ , ’ r e d ’
) ;

494
495 end
496 l e g e n d ( ’ Robot P o s i t i o n ’ , ’ A c t u a l Fo rma t ion ’ , ’ D e s i r e d

Forma t ion ’ ) ;
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497 ho ld o f f
498 end
499
500 f u n c t i o n u p d a t e D i f f e r e n t i a l D r i v e P o s ( velWorldFrame ,

ax l eLe ng th , r o b o t I n d )
501 l i n V e l = 0 ;
502 angVel = 0 ;
503
504 b o t O r i e n t a t i o n = b o t s ( r o b o t I n d ) . t r ; %New O r i e n t a t i o n
505 r o tM a t = [ cos ( b o t O r i e n t a t i o n ) s i n ( b o t O r i e n t a t i o n ) ; −

s i n ( b o t O r i e n t a t i o n ) / a x l e L e n g t h cos ( b o t O r i e n t a t i o n ) /
a x l e L e n g t h ] ;

506
507 velMat = ro tM a t ∗ velWorldFrame ;
508
509 l i n V e l = velMat ( 1 ) ;
510 angVel = velMat ( 2 ) ;
511
512 %Update t h e k i n e m a t i c p o s i t i o n o f t h e r o b o t s . We use

t h e same model
513 %t h a t i s used i n t h e r o b o t i c s i m u l a t o r t o o l b o x t o

u p d a t e t h e
514 %p o s i t i o n
515 dx = dT ∗ l i n V e l ∗ cos ( b o t O r i e n t a t i o n ) ;
516 dy = dT ∗ l i n V e l ∗ s i n ( b o t O r i e n t a t i o n ) ;
517
518 d t r = dT ∗ angVel ;
519
520 %Update t h e new p o s i t i o n s and new v e l o c i t i e s t o which

t h e r o b o t s
521 %have t o move and t h e new o r i e n t a t i o n o f t h e r o b o t s
522 b o t s ( r o b o t I n d ) . qN ( 1 ) = b o t s ( r o b o t I n d ) . q ( 1 ) + dx ;
523 b o t s ( r o b o t I n d ) . qN ( 2 ) = b o t s ( r o b o t I n d ) . q ( 2 ) + dy ;
524
525 b o t s ( r o b o t I n d ) . uN = velWorldFrame . ’ ;
526
527 b o t s ( r o b o t I n d ) . t rN = b o t s ( r o b o t I n d ) . t r + d t r ;
528 end
529
530 end
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